The development of graphitic carbon materials as anodes of sodium-ion batteries (SIBs) is greatly restricted by their inherent low specific capacity. Herein, nitrogen and sulfur co-doped 3D graphene frameworks (NSGFs) were successfully synthesized a simple and facile one-step hydrothermal method and exhibited high Na storage capacity in ether-based electrolytes. A systematic comparison was made between NSGFs, undoped graphene frameworks (GFs) and nitrogen-doped graphene frameworks (NGFs). It is demonstrated that the high specific capacity of NSGFs can be attributed to the free diffusion of Na ions within the graphene layer and reversible reaction between -C-S-C- covalent chains and Na ions thanks to the large interplanar distance and the dominant -C-S-C- covalent chains in NSGFs. NSGF anodes, therefore, exhibit a high initial coulombic efficiency (ICE) (92.8%) and a remarkable specific capacity of 834.0 mA h g at 0.1 A g. Kinetic analysis verified that the synergetic effect of N/S co-doping not only largely enhanced the Na ion diffusion rate but also reduced the electrochemical impedance of NSGFs. Postmortem techniques, such as SEM, XPS, HTEM and Raman spectroscopy, all demonstrated the extremely physicochemically stable structure of the 3D graphene matrix and ultrathin inorganic-rich solid electrolyte interphase (SEI) films formed on the surface of NSGFs. Yet it is worth noting that the Na storage performance and mechanism are exclusive to ether-based electrolytes and would be inhibited in their carbonate ester-based counterparts. In addition, the corrosion of copper foils under the synergetic effect of S atoms and ether-based electrolytes was reported for the first time. Interestingly, by-products derived from this corrosion could provide additional Na storage capacity. This work sheds light on the mechanism of improving the electrochemical performance of carbon-based anodes by heteroatom doping in SIBs and provides a new insight for designing high-performance anodes of SIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr05885eDOI Listing

Publication Analysis

Top Keywords

ether-based electrolytes
16
graphene frameworks
16
specific capacity
12
nitrogen sulfur
8
sulfur co-doped
8
co-doped graphene
8
sodium-ion batteries
8
storage capacity
8
-c-s-c- covalent
8
covalent chains
8

Similar Publications

In Operando Raman Spectroscopy Reveals Li-Ion Solvation in Lithium Metal Batteries.

Small

January 2025

Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.

Inhomogeneous lithium (Li) deposition and unstable solid electrolyte interphase are the main causes of short cycle life and safety issues in Li metal batteries (LMBs). Developing a 3D structured matrix current collector and novel electrolyte are feasible strategies to tackle these issues. Ether-based electrolytes are widely used in LMBs.

View Article and Find Full Text PDF

Tuning steric hindrance of cyclic ether electrolytes enables high-voltage lithium metal batteries.

J Colloid Interface Sci

April 2025

School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China. Electronic address:

Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether.

View Article and Find Full Text PDF

A stoichiometric cubic phase of zinc bismuth oxide ZnBiO (ZBO) is introduced as an anode for rechargeable Na-ion batteries. ZBO is synthesized using a coprecipitation method and characterized by various physicochemical techniques. Pristine ZBO shows a high cyclability in an ether-based electrolyte due to the formation of a robust interphase coupled with high Na conductivity.

View Article and Find Full Text PDF

Weakly Solvating Electrolytes for Safe and Fast-Charging Sodium Metal Batteries.

J Am Chem Soc

December 2024

Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Electrolytes for high-performance sodium metal batteries (SMBs) are expected to have high electrode compatibility, low solvation energy, and nonflammability. However, conventional flammable carbonate ester electrolytes show high Na desolvation energy and poor compatibility with sodium metal anodes, leading to slow Faradaic reactions and significant degradation of SMBs. Herein, we report a weakly solvating electrolytes (WSEs) design developed by an ionized ether-induced solvent molecule polarization strategy.

View Article and Find Full Text PDF

polymerized ether-based polymer electrolytes towards practical lithium metal batteries.

Chem Commun (Camb)

January 2025

School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.

Commercial lithium-ion batteries that use flammable liquid electrolytes face significant safety risks, such as fires caused by electrolyte leaks. Solid polymer electrolytes (SPEs) present a viable solution to this problem, with ether-based polymer electrolytes standing out due to their superior stability and compatibility with lithium metal. The ring-opening polymerization of cyclic ether monomers not only simplifies the battery manufacturing process but also improves the solid/solid interfacial contacts between electrolytes and electrodes, thereby significantly reducing interfacial impedance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!