The emerging two-dimensional (2D) semiconductors hold a promising prospect for sustaining Moore's law benefitting from the excellent device electrostatics with narrowed channel length. Here, the performance limits of sub-5 nm InSe and InSSe metal-oxide-semiconductor field-effect transistors (MOSFETs) are explored by quantum transport simulations. The van der Waals heterostructures prepared by assembling different two-dimensional materials have emerged as a new design of artificial materials with promising physical properties. In this study, device performance was investigated utilizing InSe/InSSe van der Waals heterostructure as the channel material. Both the monolayer and heterostructure devices can scale Moore's law down to 5 nm. A heterostructure transistor exhibits a higher on-state current and faster switching speed compared with isolated monolayer transistors. This work proves that the sub-5 nm InSe/InSSe MOSFET can satisfy both the low power and high-performance requirements for the international technology roadmap for semiconductors in the next decade and can provide a feasible approach for enhancing device performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr07180k | DOI Listing |
Sci Adv
January 2025
NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
To realize the optical transfer of electron spin information, developing a semiconductor layer for efficient transport of spin-polarized electrons to the active layers is necessary. In this study, electron spin transport from a GaAs/AlGaAs superlattice (SL) barrier to InGaAs quantum dots (QDs) is investigated at room temperature through a combination of time-resolved photoluminescence and rate equation analysis, separating the two transport processes from the GaAs layer around the QDs and SL barrier. The electron transport time in the SL increases for a thicker quantum well (QW) of SL due to the weaker wavefunction overlap between adjacent QWs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India.
Artificially synthesized DNA holds significant promise in addressing fundamental biochemical questions and driving advancements in biotechnology, genetics, and DNA digital data storage. Rapid and precise electric identification of these artificial DNA strands is crucial for their effective application. Herein, we present a comprehensive investigation into the electric recognition of eight artificial synthesized DNA (DNA and DNA) nucleobases using quantum tunneling transport and machine learning (ML) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!