Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe here a simple protocol yielding small (<2 nm) crystalline PdSn nanoparticles (NPs) along with Pd homologues for sake of comparison. These NPs were obtained an organometallic approach using Pd(dba)·dba (dba = dibenzylideneacetone) in THF with 2 equivalents of tributyltin hydride under 4 bars of H at room temperature. The Pd NP homologues were prepared similarly, using Pd(dba)·dba with 2 equivalents of -octylsilane. These NPs were found to be crystalline and very small with a similar mean size ( 1.5 nm). These NPs were finally used as nanocatalysts in solution for a benchmark Suzuki-Miyaura cross-coupling reaction. The PdSn NPs were found to be more active than Pd NPs analogues, exhibiting remarkable performances with Pd loading as low as 13 ppb. This result demonstrates a beneficial effect of tin on palladium in catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03476j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!