Multi-metallic catalysts containing Pt species are widely used. As there is no methodology to evaluate the quantity of active surface sites of Pt or other metal species, researchers have only published the total conversion or selectivity of all active surface sites. This study focuses on Pt-Pd bimetallic catalysts and uses both methane reaction kinetics and infrared (IR) spectroscopy to characterize the surface Pd and Pt sites. The surface Pt sites, which were determined from the fitted rate coefficients, were evaluated in the reaction region where the catalyst structure was insensitive to catalytic performance. Another methodology involves IR spectroscopy to normalize the active surface sites. As three typical absorption bands of Pt species were observed during CO chemisorption, spectral deconvolution was conducted to obtain the integrated intensity of the Pd and Pt species, and the quantity of surface Pd and Pt sites was calculated. The two methods have good consistency, and the IR spectra are considered to be more suitable for calculating the quantity of active surface sites. In addition, the IR spectra revealed a correlation between oxidative Pd surface sites and methane reactivity. The ionic Pd sites provide abundant oxygen intermediates in the catalytic reaction and improve the catalytic performance. As for the surface Pd species and bulk Pd species, the XPS results indicate a similar variation in the Pd/(Pd + Pd) ratio Pd/Pt ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp05287c | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, Environmental Science and Engineering, CHINA.
Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.
To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!