Herpes simplex virus 1 (HSV-1) establishes latency in neurons and expresses long noncoding RNAs termed the latency-associated transcripts (LATs). Two previous studies using HSV-1 recombinants containing deletions in the LAT promoter revealed opposing effects of the promoter deletion regarding the heterochromatinization of latent viral genomes in mice ganglia. Confounding variables in these studies include viral strains utilized (17 versus KOS), anatomical infection site (footpad versus eye) and infectious virus dose (500 versus 1 × 10 PFU), and to date the basis for the differences between the two studies remains unresolved. We recently reported that 17 and KOS display distinct differences in heterochromatin levels during latency in human neurons. This raised the possibility that the discrepancy seen between the two previous studies could be explained by strain-specific differences within the LAT region. Here, we examine two recombinants containing orthologous 202 bp LAT promoter deletions, 17ΔPst and KOSΔPst, in a human neuronal model of latency and reactivation (LUHMES). We found that LUHMES neurons recapitulate previous observations in mice where deletion of the LAT promoter results in an increase in H3K27me3 deposition on the viral genome compared to the parental strain 17 but a decrease compared to the parental strain KOS. We also found distinct strain-specific differences in the production of viral transcripts and proteins during latency. These results indicate that the function and/or regulation of the LATs differs between HSV-1 strains and may shed light on some discrepancies found in the literature when examining the function of the LATs. Herpes simplex virus 1 (HSV-1) establishes a lifelong infection in neuronal cells. Periodically, the virus reactivates from this latent state and causes recurrent disease. Mechanisms that control entry into and maintenance of latency are not well understood, though epigenetic posttranslational modification of histones associated with the viral genome are known to play an important role. During latency, the latency-associated transcript (LAT) is known to impact epigenetic marks, but the ultimate effect has been a point of controversy. Here, we utilize a human neuronal cell line model of HSV latency and reactivation (LUHMES) to characterize latency for two HSV-1 wild-type strains and their respective LAT promoter deletion viruses. We find that the LAT acts in a strain-specific manner to influence levels of chromatin marks, viral transcription, and viral protein production. This work highlights the need to account for strain-specific differences when characterizing the LAT's function and the dynamics of reactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972990PMC
http://dx.doi.org/10.1128/jvi.01935-22DOI Listing

Publication Analysis

Top Keywords

lat promoter
20
promoter deletion
12
strain-specific differences
12
deletion viruses
8
viral
8
latent viral
8
viral genomes
8
human neurons
8
herpes simplex
8
simplex virus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!