The role of the sextet potential energy surface in O + N inelastic collision processes.

Phys Chem Chem Phys

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.

Published: February 2023

We have performed molecular dynamics simulations of inelastic collisions between molecular oxygen and atomic nitrogen, employing the quasi-classical trajectory method on the new doublet, quartet, and sextet analytical potential energy surfaces of NO. A complete database of vibrationally detailed rate coefficients is constructed in a wide temperature range for high vibrational states up to = 25. In particular, the present work shows that the sextet potential energy surface plays a crucial role in the rovibrational relaxation process of O + N collisions. The state-to-state rate coefficients increase by a factor of 2 to 6 when we consider the contribution of this sextet potential energy surface according to the corresponding weight factor, especially for vibrational energy transfer processes in single quantum jumps and/or high-temperature regimes. Furthermore, we also provide Arrhenius-type accurate fits for the vibrational state-specific rate coefficients of this collision system to achieve the flexible application of rate coefficients in numerical codes concerning air kinetics. Our results have implications for understanding the relaxation mechanism of the collision system with degenerate electronic states.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05329bDOI Listing

Publication Analysis

Top Keywords

potential energy
16
rate coefficients
16
sextet potential
12
energy surface
12
collision system
8
energy
5
role sextet
4
potential
4
surface inelastic
4
inelastic collision
4

Similar Publications

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

Intermetallic RNiSi (R = Ca, La, and Y) Catalysts with Electron-Rich Ni Sites for Continuous Flow Selective Hydrogenation of Maleic Anhydride.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!