Recently, lysosome targeting chimeras (LYTACs) have emerged as a promising technology that expands the scope of targeted protein degradation to extracellular targets. However, the preparation of chimeras by conjugation of the antibody and trivalent N-acetylgalactosamine (tri-GalNAc) is a complex and time-consuming process. The large uncertainty in number and position and the large molecular weights of the chimeras result in low internalization efficiency. To circumvent these problems, we developed the first aptamer-based LYTAC (Apt-LYTAC) to realize liver-cell-specific degradation of extracellular and membrane proteins by conjugating aptamers to tri-GalNAc. Taking advantage of the facile synthesis and low molecular weight of the aptamer, the Apt-LYTACs can efficiently and quickly degrade the extracellular protein PDGF and the membrane protein PTK7 through a lysosomal degradation pathway. We anticipate that the novel Apt-LYTACs will expand the usage of aptamers and provide a new dimension for targeted protein degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202218106 | DOI Listing |
Front Immunol
January 2025
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.
View Article and Find Full Text PDFMater Today Bio
February 2025
School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia.
Antiandrogen therapies are effectively used to treat advanced prostate cancer, but eventually cancer adaptation drives unresolved metastatic castration-resistant prostate cancer (mCRPC). Adipose tissue influences metabolic reprogramming in cancer and was proposed as a contributor to therapy resistance. Using extracellular matrix (ECM)-mimicking hydrogel coculture models of human adipocytes and prostate cancer cells, we show that adipocytes from subcutaneous or bone marrow fat have dissimilar responses under the antiandrogen Enzalutamide.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.
View Article and Find Full Text PDFOncol Res
January 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!