Li-rich layered materials have attracted much attention for their large capacity (>250 mA h g) stemming from anion redox at high voltage. However, inherent problems, such as capacity decay and voltage decay/hysteresis during cycling, hinder their commercial progress. In this work, an oxygen vacancy-accompanied spinel interface layer is constructed by gas-solid reaction NiCO treatment at 650 °C, which reduces the asymmetry of anion redox and improves structural stability. Therefore, a 1 mol% NiCO-modified sample powerfully reduces the voltage hysteresis (∼0.23 V) in the first cycle, simultaneously exhibiting an excellent discharge capacity of 275 mA h g at 0.1 C with a capacity retention of 90% for 200 cycles at 1 C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr05936cDOI Listing

Publication Analysis

Top Keywords

voltage hysteresis
8
anion redox
8
addressing voltage
4
hysteresis li-rich
4
li-rich cathode
4
cathode materials
4
materials gas-solid
4
gas-solid interface
4
interface modification
4
modification li-rich
4

Similar Publications

A three-dimensional numerical model of the vacuum sintering furnace was established, combined with the custom program of temperature-voltage feedback regulation. Through simulationand experimental validation, the heating and holding stage as well as the thermal hysteresis phenomenon of the furnace were analyzed, a dimensionless quantity of hysteresis temperature difference was proposed and calculated, the distribution of the electric field and temperature uniformity of the furnace were discussed in detail, while the structural improvement approach was proposed based on simulation. The results show that: during the heating process, the maximum of thermal hysteresis temperature difference between the graphite cylinder and the heating tube is 0.

View Article and Find Full Text PDF

Utilizing MOFs Melt-Foaming to Design Functionalized Carbon Foams for 100% Deep-Discharge and Ultrahigh Capacity Sodium Metal Anodes.

ACS Nano

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Meltable metal-organic frameworks (MOFs) offer significant accessibility to chemistry and moldability for developing carbon-based materials. However, the scarcity of low melting point MOFs poses challenges for related design. Here, we propose a MOFs melt-foaming strategy toward Ni single atoms/quantum dots-functionalized carbon foams (NiSA/QD@CFs).

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF

Oxygen Dimerization-Driven Cation Migration Induces Voltage Hysteresis in Disordered Rocksalt Cathodes.

J Am Chem Soc

December 2024

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Despite the potential to increase the energy limit of Li-rich cathodes by using oxygen redox, its practicality has been limited by the accompanying structural changes and voltage hysteresis. While voltage hysteresis is commonly associated with transition metal (TM) migration and oxygen dimerization, the specific contribution of each is unclear. We provide a mechanistic insight into how each of these changes induces hysteresis in a representative Li-rich disordered rocksalt cathode, LiMnTiO.

View Article and Find Full Text PDF

This paper reports the utilization of cost-effective bottom-contact electrodes composed of aluminum (Al) and titanium (Ti) to facilitate efficient electron injection in n-channel organic transistors. The optimized Al/Ti electrode has a low work function of around 4.03 eV, combining the high conductivity of Al with the stable interface of Ti, making it highly suitable for the electrodes of n-channel transistors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!