Camouflaged Virus-Like-Nanocarrier with a Transformable Rough Surface for Boosting Drug Delivery.

Angew Chem Int Ed Engl

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.

Published: March 2023

AI Article Synopsis

  • Researchers have developed a unique nanocarrier that imitates a virus and can adapt its surface properties for better drug delivery.
  • This nanocarrier has a rough interior but is initially covered by a polymer that masks its roughness to avoid unwanted interactions in the body.
  • In acidic environments, like tumors, the polymer layer disappears, revealing the rough surface to improve the nanocarrier's retention and absorption in tumor tissues, leading to better treatment outcomes.

Article Abstract

Due to non-specific strong nano-bio interactions, it is difficult for nanocarriers with permanent rough surface to cross multiple biological barriers to realize efficient drug delivery. Herein, a camouflaged virus-like-nanocarrier with a transformable rough surface is reported, which is composed by an interior virus-like mesoporous SiO nanoparticle with a rough surface (vSiO ) and an exterior acid-responsive polymer. Under normal physiological pH condition, the spikes on vSiO are hidden by the polymer shell, and the non-specific strong nano-bio interactions are effectively inhibited. While in the acidic tumor microenvironment, the nanocarrier sheds the polymer camouflage to re-expose its rough surface. So, the retention ability and endocytosis efficiency of the nanocarrier are great improved. Owing to it's the dynamically variable rough surface, the rationally designed nanocarrier exhibits extended blood-circulation-time and enhanced tumor accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202216188DOI Listing

Publication Analysis

Top Keywords

rough surface
24
camouflaged virus-like-nanocarrier
8
virus-like-nanocarrier transformable
8
transformable rough
8
drug delivery
8
non-specific strong
8
strong nano-bio
8
nano-bio interactions
8
rough
6
surface
6

Similar Publications

Synergizing grayscale photopolymerization and meniscus coating processes, rapid 3D printing of optical lenses is reported previously using projection microstereolithography (PμSL) process. Despite its 14 000-fold-improved printing speed over the femtosecond 3D printing process, PμSL still consumes significant amount of the fabrication time for precise recoating 5 μm thick fresh resin layers. At the reported speed of 24.

View Article and Find Full Text PDF

Objectives To assess the influence of cigarette smoke (CS) on the color and surface roughness of 3D printed, milled, and traditionally fabricated provisional crown and bridge (PC&B) materials. Materials and methods 112 disc-shaped samples were made employing four techniques and materials (28 per group) to fabricate PC&B prostheses. Specimens were fabricated using standard protocols, such as 3D printing, milling, conventional bis-acrylic resin, and traditional autopolymerizing polymethyl methacrylate (PMMA) resin.

View Article and Find Full Text PDF

Preparation, characterization and in vitro antioxidant activities of a homogeneous polysaccharide from Prunella vulgaris.

Fitoterapia

December 2024

State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China. Electronic address:

Prunella vulgaris is a medicinal and edible homologous plant, commonly used as a folk medicine to treat diseases. The Prunella vulgaris polysaccharides (PVPs) are reported with the antioxidant activity. This work was designed to isolate, characterize, and test the antioxidant activity of purified PVPs from P.

View Article and Find Full Text PDF

Bacterial surface informatics reliant on multi-mechanism simultaneous detection for Salmonella typhimurium and Staphylococcus aureus.

Food Chem

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; College of Food Engineering, Ludong University, Yantai, 264025, Shandong, PR China. Electronic address:

Fully excavating and utilizing the rich information presented on bacterial surfaces can open innovative solutions for the multi-mechanism detection of food-borne pathogens. In this work, a colorimetric-fluorescence dual-signal lateral flow immunoassay was used to establish a simultaneous detection strategy integrating five physical, chemical, and biometric combining mechanisms for Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S.

View Article and Find Full Text PDF

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!