Plasma derived extracellular vesicle biomarkers of microglia activation in an experimental stroke model.

J Neuroinflammation

Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, The University of Western Ontario, 458 Medical Sciences Building, ON, N6A 3K, London, Canada.

Published: January 2023

Chronic microglia activation post-stroke is associated with worse neurological and cognitive outcomes. However, measurement of microglia activation in vivo is currently limited. Plasma derived extracellular vesicles (EVs) are cell-specific indicators that may allow for non-invasive measurement of microglia phenotype. The aim of this study was to identify activation-state specific microglia EVs (MEVs) in vitro followed by validation in an experimental stroke model. Following pro-inflammatory activation, MEVs contain the microglia protein TMEM119 alongside increased expression of the Toll-like receptor 4 co-receptor CD14. Immunoprecipitation followed by fluorescent nanoparticle tracking analysis (ONI Nanoimager) was used to confirm the isolation of TMEM119/CD14 EVs from rat plasma. Electron microscopy confirmed that TMEM119 and CD14 localize to the MEV membrane. To model ischemia, plasma was collected from 3-month wildtype Fischer344 rats prior to, 7 and 28 days after endothelin-1 or saline injection into the dorsal right striatum. Fluorescently labelled MEVs were directly measured in the plasma using nanoflow cytometry (Apogee A60 Microplus). We report a significant increase in circulating TMEM119/CD14 EVs 28-days post-stroke in comparison to baseline levels and saline-injected rats, which correlated weakly with stroke volume. TMEM119/MHC-II EVs were also increased post-stroke in comparison to baseline and saline-injected animals. This study is the first to describe an EV biomarker of activated microglia detected directly in plasma following stroke and represents a future tool for the measurement of microglia activity in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890769PMC
http://dx.doi.org/10.1186/s12974-023-02708-xDOI Listing

Publication Analysis

Top Keywords

microglia activation
12
measurement microglia
12
plasma derived
8
derived extracellular
8
microglia
8
experimental stroke
8
stroke model
8
tmem119/cd14 evs
8
post-stroke comparison
8
comparison baseline
8

Similar Publications

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.

Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.

View Article and Find Full Text PDF

Oligodendrocytes in Alzheimer's disease pathophysiology.

Nat Neurosci

January 2025

Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.

Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.

View Article and Find Full Text PDF

Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy.

Acta Pharmacol Sin

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.

View Article and Find Full Text PDF

Background: Early screening is critical for the prevention of ischemic stroke. miR-574-5p was considered a promising biomarker for ischemic stroke but lacks direct confirmation. This study evaluated miR-574-5p in discriminating ischemic stroke and predicting the severity and prognosis of patients, aiming to provide novel insights into the clinical prevention of ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!