A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PP-DDP: a privacy-preserving outsourcing framework for solving the double digest problem. | LitMetric

Background: As one of the fundamental problems in bioinformatics, the double digest problem (DDP) focuses on reordering genetic fragments in a proper sequence. Although many algorithms for dealing with the DDP problem were proposed during the past decades, it is believed that solving DDP is still very time-consuming work due to the strongly NP-completeness of DDP. However, none of these algorithms consider the privacy issue of the DDP data that contains critical business interests and is collected with days or even months of gel-electrophoresis experiments. Thus, the DDP data owners are reluctant to deploy the task of solving DDP over cloud.

Results: Our main motivation in this paper is to design a secure outsourcing computation framework for solving the DDP problem. We at first propose a privacy-preserving outsourcing framework for handling the DDP problem by using a cloud server; Then, to enable the cloud server to solve the DDP instances over ciphertexts, an order-preserving homomorphic index scheme (OPHI) is tailored from an order-preserving encryption scheme published at CCS 2012; And finally, our previous work on solving DDP problem, a quantum inspired genetic algorithm (QIGA), is merged into our outsourcing framework, with the supporting of the proposed OPHI scheme. Moreover, after the execution of QIGA at the cloud server side, the optimal solution, i.e. two mapping sequences, would be transferred publicly to the data owner. Security analysis shows that from these sequences, none can learn any information about the original DDP data. Performance analysis shows that the communication cost and the computational workload for both the client side and the server side are reasonable. In particular, our experiments show that PP-DDP can find optional solutions with a high success rate towards typical test DDP instances and random DDP instances, and PP-DDP takes less running time than DDmap, SK05 and GM12, while keeping the privacy of the original DDP data.

Conclusion: The proposed outsourcing framework, PP-DDP, is secure and effective for solving the DDP problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890771PMC
http://dx.doi.org/10.1186/s12859-023-05157-8DOI Listing

Publication Analysis

Top Keywords

ddp problem
20
solving ddp
20
outsourcing framework
16
ddp
16
ddp data
12
cloud server
12
ddp instances
12
privacy-preserving outsourcing
8
framework solving
8
double digest
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!