Newly discovered roles of triosephosphate isomerase including functions within the nucleus.

Mol Med

Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.

Published: January 2023

Triosephosphate isomerase (TPI) is best known as a glycolytic enzyme that interconverts the 3-carbon sugars dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). TPI is an essential enzyme that is required for the catabolism of DHAP and a net yield of ATP from anaerobic glucose metabolism. Loss of TPI function results in the recessive disease TPI Deficiency (TPI Df). Recently, numerous lines of evidence suggest the TPI protein has other functions beyond glycolysis, a phenomenon known as moonlighting or gene sharing. Here we review the numerous functions ascribed to TPI, including recent findings of a nuclear role of TPI implicated in cancer pathogenesis and chemotherapy resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890696PMC
http://dx.doi.org/10.1186/s10020-023-00612-xDOI Listing

Publication Analysis

Top Keywords

triosephosphate isomerase
8
tpi
8
newly discovered
4
discovered roles
4
roles triosephosphate
4
isomerase including
4
including functions
4
functions nucleus
4
nucleus triosephosphate
4
isomerase tpi
4

Similar Publications

We report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Interplay between tobacco curly shoot virus vsiRNA24 and triosephosphate isomerase: implications for Nicotiana benthamiana viral defense.

New Phytol

December 2024

Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Virus-derived small interfering RNAs (vsiRNAs) play an important role in viral infection by regulating the expression of host genes. At present, research on the regulation of plant primary metabolic pathways by vsiRNAs is very limited. TvsiRNA24 derived from tobacco curly shoot virus (TbCSV) was amplified by reverse transcription polymerase chain reaction, and its target gene NbTPI (triosephosphate isomerase) was verified using reverse transcription quantitative polymerase chain reaction and GFP fluorescence observation.

View Article and Find Full Text PDF

We report the first implementation of ion mobility mass spectrometry combined with an ultrahigh throughput sample introduction technology for high-throughput screening (HTS). The system integrates differential mobility spectrometry (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the substrates and products of isomerase-mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens, offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF

Background: Giardia duodenalis (G. duodenalis) is an intestinal protozoan parasite of human and animal hosts. The present study investigated and compared the assemblages of G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!