The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202207875 | DOI Listing |
J Infect Dis
December 2024
Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Background: The robustness and persistence of vaccine antigen-induced antibodies are often used as proxy indicators of vaccine efficacy, but immune responses to vaccine vectors are typically less well-defined. Our study considered the kinetics of immunoglobulin (IgG) responses against the vector (vesicular stomatitis Indiana virus [VSIV]) nucleoprotein (N) and the inserted antigen (Ebola virus [EBOV]) glycoprotein (GP1,2) components of the rVSVΔG-ZEBOV-GP (rVSV-ZEBOV) vaccine and evaluated their use as biomarkers to confirm self-reported vaccination status.
Methods: From the Partnership for Research on Ebola Virus in Liberia (PREVAIL) I clinical trial (NCT02344407), we randomly selected 212 participants who received rVSV-ZEBOV (n=107) or placebo (n=105).
Viruses
November 2024
Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
Vesicular stomatitis virus (VSV), comprising vesicular stomatitis New Jersey virus (VSNJV) and vesicular stomatitis Indiana virus (VSIV), emerges from its focus of endemic transmission in Southern Mexico to cause sporadic livestock epizootics in the Western United States. A dearth of information on the role of potential arthropod vectors in the endemic region hampers efforts to identify factors that enable endemicity and predict outbreaks. In a two-year, longitudinal study at five cattle ranches in Chiapas, Mexico, insect taxa implicated as VSV vectors (blackflies, sandflies, biting midges, and mosquitoes) were collected and screened for VSV RNA, livestock vesicular stomatitis (VS) cases were monitored, and serum samples were screened for neutralizing antibodies.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
Cell Biochem Biophys
November 2024
Animal Biotechnology Centre, Indian Council of Agricultural Research-National Dairy Research Institute (NDRI), Karnal, India.
Mammary Gland Protein-40 (MGP-40), also known as chitinase-3-like protein 1 (CHI3L1), is involved in critical biological processes such as inflammation, tissue remodeling, and cell proliferation, especially during the involution phase of the mammary gland. This study aimed to explore the molecular mechanisms of MGP-40 by identifying its novel interacting partners in buffalo mammary epithelial cells (BuMECs). Stable overexpression of MGP-40 in BuMECs was achieved through transfection with the pCIneo-MGP-40 vector, followed by G418 selection and confirmation by Western blot analysis.
View Article and Find Full Text PDFJ Wildl Dis
November 2024
Department of Evolutionary Anthropology, 104 Biological Sciences, Duke University, Durham, North Carolina 27708, USA.
We investigated the prevalence of arthropod-borne viral diseases in a population of free-ranging mantled howler monkeys (Alouatta palliata) in Costa Rica in 1998. Blood samples were opportunistically collected from monkeys anesthetized for another study. Serology was performed on 64 individuals to assess exposure of this population to vesicular stomatitis virus, equine encephalitis viruses, Mayaro virus, St.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!