The broad employment of water electrolysis for hydrogen (H) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a CuAg electrocatalyst. Such a strategy not only produces more valuable anodic product than O but also releases H at the anode with a small voltage input. Density functional theory studies indicate the HC(OH)O intermediate from formaldehyde hydration can be better stabilized on CuAg than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of CuAg(+)||NiN/Ni(-) can produce H at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm with a cell voltage of only 0.60 V.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889775PMC
http://dx.doi.org/10.1038/s41467-023-36142-7DOI Listing

Publication Analysis

Top Keywords

hydrogen production
8
dual hydrogen
4
production electrocatalytic
4
electrocatalytic water
4
water reduction
4
reduction coupled
4
coupled formaldehyde
4
formaldehyde oxidation
4
oxidation copper-silver
4
copper-silver electrocatalyst
4

Similar Publications

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Since hydrogen is a promising alternative to fossil fuels due to its high energy density and environmental friendliness, water electrolysis for hydrogen production has received widespread attentions wherein the development of active and stable catalytic materials is a key research direction. This article designs a dual transition metal doped functional graphene for hydrogen evolution reaction via density functional theory calculations. Among varied combinations, 16 candidates are screened out that are expected to be stable as reflected by the criterion of formation energy Ef < 0 and active due to its free energy of hydrogen adsorption ∆GH within the window of ±0.

View Article and Find Full Text PDF

Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.

View Article and Find Full Text PDF

Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.

View Article and Find Full Text PDF

The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.

ACS Electrochem

January 2025

Stephenson Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.

Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!