Objectives: To systematically review current research applications of radiomics in patients with cholangiocarcinoma and to assess the quality of CT and MRI radiomics studies.

Methods: A systematic search was conducted on PubMed/Medline, Web of Science, and Scopus databases to identify original studies assessing radiomics of cholangiocarcinoma on CT and/or MRI. Three readers with different experience levels independently assessed quality of the studies using the radiomics quality score (RQS). Subgroup analyses were performed according to journal type, year of publication, quartile and impact factor (from the Journal Citation Report database), type of cholangiocarcinoma, imaging modality, and number of patients.

Results: A total of 38 original studies including 6242 patients (median 134 patients) were selected. The median RQS was 9 (corresponding to 25.0% of the total RQS; IQR 1-13) for reader 1, 8 (22.2%, IQR 3-12) for reader 2, and 10 (27.8%; IQR 5-14) for reader 3. The inter-reader agreement was good with an ICC of 0.75 (95% CI 0.62-0.85) for the total RQS. All studies were retrospective and none of them had phantom assessment, imaging at multiple time points, nor performed cost-effectiveness analysis. The RQS was significantly higher in studies published in journals with impact factor > 4 (median 11 vs. 4, p = 0.048 for reader 1) and including more than 100 patients (median 11.5 vs. 0.5, p < 0.001 for reader 1).

Conclusions: Quality of radiomics studies on cholangiocarcinoma is insufficient based on the radiomics quality score. Future research should consider prospective studies with a standardized methodology, validation in multi-institutional external cohorts, and open science data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889586PMC
http://dx.doi.org/10.1186/s13244-023-01365-1DOI Listing

Publication Analysis

Top Keywords

radiomics quality
8
quality score
8
original studies
8
patients median
8
total rqs
8
radiomics
6
studies
5
rqs
5
systematic review
4
review radiomics
4

Similar Publications

Comparison of Resampling Methods and Radiomic Machine Learning Classifiers for Predicting Bone Quality Using Dual-Energy X-Ray Absorptiometry.

Diagnostics (Basel)

January 2025

Instituto de Investigación en Tecnología Informática Avanzada, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil 7000, Argentina.

: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited.

View Article and Find Full Text PDF

The need for effective early detection and optimal therapy monitoring of cardiovascular diseases as the leading cause of death has led to an adaptation of the guidelines with a focus on cardiac computed tomography (CCTA) in patients with a low to intermediate risk of coronary heart disease (CHD). In particular, the introduction of photon-counting computed tomography (PCCT) in CT diagnostics promises significant advances through higher temporal and spatial resolution, and also enables advanced texture analysis, known as radiomics analysis. Originally developed in oncological imaging, radiomics analysis is increasingly being used in cardiac imaging and research.

View Article and Find Full Text PDF

Background: Radiomics has emerged as a promising approach for diagnosing, treating, and evaluating the prognosis of various diseases in recent years. Some investigators have utilized radiomics to create preoperative diagnostic models for tumor deposits (TDs) and perineural invasion (PNI) in rectal cancer (RC). However, there is currently a lack of comprehensive, evidence-based support for the diagnostic performance of these models.

View Article and Find Full Text PDF

Introduction: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Despite advancements in early detection and treatment, postsurgical recurrence remains a significant challenge, occurring in 30%-55% of patients within 5 years after surgery. This review analysed existing studies on the utilisation of artificial intelligence (AI), incorporating CT, PET, and clinical data, for predicting recurrence risk in early-stage NSCLCs.

View Article and Find Full Text PDF

Background: Perineural invasion (PNI) in colorectal cancer (CRC) is a significant prognostic factor associated with poor outcomes. Radiomics, which involves extracting quantitative features from medical imaging, has emerged as a potential tool for predicting PNI. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of radiomics models in predicting PNI in CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!