Stereo-electroencephalography (SEEG) is the surgical implantation of electrodes in the brain to better localize the epileptic network in pharmaco-resistant epileptic patients. This technique has exquisite spatial and temporal resolution. Still, the number and the position of the electrodes in the brain is limited and determined by the semiology and/or preliminary non-invasive examinations, leading to a large number of unexplored brain structures in each patient. Here, we propose a new approach to reconstruct the activity of non-sampled structures in SEEG, based on independent component analysis (ICA) and dipole source localization. We have tested this approach with an auditory stimulation dataset in ten patients. The activity directly recorded from the auditory cortex served as ground truth and was compared to the ICA applied on all non-auditory electrodes. Our results show that the activity from the auditory cortex can be reconstructed at the single trial level from contacts as far as ∼40 mm from the source. Importantly, this reconstructed activity is localized via dipole fitting in the proximity of the original source. In addition, we show that the size of the confidence interval of the dipole fitting is a good indicator of the reliability of the result, which depends on the geometry of the SEEG implantation. Overall, our approach allows reconstructing the activity of structures far from the electrode locations, partially overcoming the spatial sampling limitation of intracerebral recordings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.119905DOI Listing

Publication Analysis

Top Keywords

independent component
8
component analysis
8
electrodes brain
8
auditory cortex
8
dipole fitting
8
activity
5
reconstruction localization
4
auditory
4
localization auditory
4
auditory sources
4

Similar Publications

Guest Segregation in Heteromeric Multicage Systems.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.

Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.

View Article and Find Full Text PDF

Emotion processing is an integral part of everyone's life. The basic neural circuits involved in emotion perception are becoming clear, though the emotion's cognitive processing remains under investigation. Utilizing the stereo-electroencephalograph with high temporal-spatial resolution, this study aims to decipher the neural pathway responsible for discriminating low-arousal and high-arousal emotions.

View Article and Find Full Text PDF

Introduction: Massive hemorrhage calls for massive transfusions (MTs) to maintain adequate hemostasis. Massive transfusion protocols (MTPs) are the appropriate treatment strategy for such patients replacing conventional use of crystalloids. These help in standardizing and optimizing the delivery of blood components in a well-balanced ratio.

View Article and Find Full Text PDF

Understanding the neural mechanisms underlying emotional processing is critical for advancing neuroscience and mental health interventions. This study examined these mechanisms by analyzing EEG connectivity patterns across different brain regions while participants evoked various emotions. After applying independent component analysis (ICA) to eliminate non-cortical activity, we assessed frequency-specific connectivity patterns using coherence, Granger causality, and graph theoretical measures to evaluate both functional and effective connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!