A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of nanoplastics capture by jellyfish mucin and its potential as a sustainable water treatment technology. | LitMetric

Mechanism of nanoplastics capture by jellyfish mucin and its potential as a sustainable water treatment technology.

Sci Total Environ

Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel; The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel. Electronic address:

Published: April 2023

The accumulation of nanoplastics (NPs) in the environment has raised concerns about their impact on human health and the biosphere. The main aim of this study is to understand the mechanism that governs the capture of NPs by jellyfish mucus extracted from the jellyfish Aurelia sp. (A.a.) and compare the capture/removal efficiency to that of conventional coagulants and mucus from other organisms. The efficacy of A.a mucus to capture polystyrene and acrylic NPs (∼100 nm) from spiked wastewater treatment plant (WWTP) effluent was evaluated. The mucus effect on capture kinetics and destabilization of NPs of different polymer compositions, sizes and concentrations was quantified by means of fluorescent NPs, dynamic light scattering and zeta potential measurements and visualized by scanning electron microscopy. A dosing of A.a. mucus equivalent to protein concentrations of ∼2-4 mg L led to a rapid change in zeta potential from a baseline of -30 mV to values close to 0 mV, indicating a marked change from a stable to a non-stable dispersion leading to a rapid (<10 min) and significant removal of NPs (60 %-90 %) from a stable suspension. The A.a. mucus outperformed all other mucus types (0-37 %) and coagulants (0 %-32 % for ferric chloride; 23-40 % for poly aluminum chlorohydrate), highlighting the potential for jellyfish mucus to be used as bio-flocculant. The results indicate a mucus-particle interaction consisting of adsorption-bridging and "mesh" filtration. Further insight is provided by carbohydrate composition and protein disruption analysis. Total protein disruption resulted in a complete loss of the A.a. mucus capacity to capture NPs, while the breaking of disulfide bonds and protein unfolding resulted in improved capture capacity. The study demonstrates that natural jellyfish mucin can capture and remove NPs in water and wastewater treatment systems more efficiently than conventional coagulants, highlighting the potential for development of a new type of bio-flocculant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161824DOI Listing

Publication Analysis

Top Keywords

mucus capture
8
zeta potential
8
nps
5
mucus
5
mechanism nanoplastics
4
capture
4
nanoplastics capture
4
capture jellyfish
4
jellyfish mucin
4
mucin potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!