Background And Objective: Computer simulations of joint contact mechanics have great merit to improve our current understanding of articular ankle pathology. Owed to its computational simplicity, discrete element analysis (DEA) is an encouraging alternative to finite element analysis (FEA). However, previous DEA models lack subject-specific anatomy and may oversimplify the biomechanics of the ankle. The objective of this study was to develop and validate a personalized DEA framework that permits movement of the fibula and incorporates personalized cartilage thickness as well as ligamentous constraints.
Methods: A linear and non-linear DEA framework, representing cartilage as compressive springs, was established, verified, and validated. Three-dimensional (3D) bony ankle models were constructed from cadaveric lower limb CT scans imaged during application of weight (85 kg) and/or torque (10 Nm). These 3D models were used to generate cartilage thickness and ligament insertion sites based on a previously validated statistical shape model. Ligaments were modelled as non-linear tension-only springs. Validation of contact stress prediction was performed using a simple, axially constrained tibiotalar DEA model against an equivalent FEA model. Validation of ligamentous constraints compared the final position of the ankle mortise to that of the cadaver after application of torque and sequential ligament sectioning. Finally, a combined ligamentous-constraining DEA model was validated for predicted contact stress against an equivalent ligament-constraining FEA model.
Results: The linear and non-linear DEA model reproduced a mean articular contact stress within 0.36 MPa and 0.39 MPa of the FEA calculated stress, respectively. With respect to the ligamentous validation, the DEA ligament-balancing algorithm could reproduce the position of the distal fibula within the ankle mortise to within 0.97 mm of the experimental observed distal fibula. When combining the ligament-constraining and contact stress algorithm, DEA was able to reproduce a mean articular contact stress to within 0.50 MPa of the FEA calculated contact stress.
Conclusion: The DEA framework presented herein offers a computationally efficient alternative to FEA for the prediction of contact stress in the ankle joint, manifesting its potential to enhance the mechanical understanding of articular ankle pathologies on both a patient-specific and population-wide level. The novelty of this model lies in its personalized nature, inclusion of the distal tibiofibular joint and the use of non-linear ligament balancing to maintain the physiological ankle joint articulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2023.107366 | DOI Listing |
BMC Public Health
January 2025
Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.
Background: Imprisonment has a major impact on a person's psychological well-being. The proportion of older imprisoned persons is dramatically increasing worldwide, and they are likely to have greater physical and mental health needs compared to younger persons in prisons. However, there is currently a lack of research on the psychological stressors and the coping strategies of older imprisoned persons.
View Article and Find Full Text PDFAIDS Behav
January 2025
Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, G7, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
People with HIV (PWH) are at greater risk of experiencing mental health problems, such as depression and post-traumatic stress disorder (PTSD). The purpose of our study was to determine the prevalence of posttraumatic stress disorder PTSD in PWH. PWH in care Amsterdam University Medical center (Amsterdam UMC) with access to the electronic patient portal were offered patient-reported outcome measures (PROMs) between May 2022 and May 2023, including the PC-PTSD-5 screen for PTSD as part of routine clinical care.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA. Electronic address:
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.
View Article and Find Full Text PDFJMIR Form Res
January 2025
College of Nursing, The Ohio State University, Columbus, OH, United States.
Background: Researchers have encountered challenges in recruiting unpaid caregivers of people living with Alzheimer disease and related dementias for intervention studies. However, little is known about the reasons for nonparticipation in in-home smart health interventions in community-based settings.
Objective: This study aimed to (1) assess recruitment rates in a smart health technology intervention for caregivers of people living with Alzheimer disease and related dementias and reasons for nonparticipation among them and (2) discuss lessons learned from recruitment challenges and strategies to improve recruitment.
Int J Biol Macromol
January 2025
Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:
Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!