Long non-coding RNAs (lncRNAs), as functional components of the human genome, are widely involved in cell proliferation, differentiation, apoptosis, migration and invasion by several types of cancer, including lung cancer. However, the role of lncRNA IPW in lung cancer has not been fully elucidated. The aim of the present study was to characterize the expression and clinical significance of lncRNA IPW in lung cancer. IPW expression in tumor samples and cells was assessed using the Oncomine and Cancer Cell Line Encyclopedia (CCLE) database, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine IPW expression and microRNA-370 (miR-370) expression. The clinical significance of IPW was evaluated by Chi-square test and Kaplan-Meier pot analyses. In addition, the sulforhodamine blue (SRB) assays was used to detect cell proliferation in IPW-overexpressed A549 cells. IPW expression was significantly down-regulated in NSCLC tissues and was significantly associated with many clinicopathological data, including smoking history, differentiation, pT factor, pN factor and pTNM stage ( < 0.05). Decreased IPW expression was correlated with poor survival ( = 1.5e-05) and was positively associated with first progression in patients with lung adenocarcinoma ( = 0.00041). Furthermore, IPW could inhibit A549 cell proliferation and expression of miR-370. High miR-370 expression was associated with poor overall survival (OS) among lung adenocarcinoma patients ( = 0.045). These findings provide evidence that down-regulation of IPW might be considered as a beneficial prognostic biomarker and that it could potentially serve as therapeutic target in lung adenocarcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1089/gtmb.2022.0173DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
ipw expression
12
cell proliferation
8
lncrna ipw
8
ipw lung
8
expression clinical
8
clinical significance
8
ipw
7
cancer
5
expression
5

Similar Publications

Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.

View Article and Find Full Text PDF

Antibodies targeting immune checkpoints, such as PD-1, PD-L1, or CTLA-4, have transformed the treatment of patients with lung cancers. Unprecedented rates of durable responses are achieved in an imperfectly characterized population of patients with metastatic disease. More recently, immune checkpoint inhibitors have been explored in patients with resectable non-small-cell lung cancers.

View Article and Find Full Text PDF

Lung cancers associated with cystic airspaces (LCCAs) are a rare and relatively novel concept analyzed in various case reports and retrospective studies. In this review, it was our aim to investigate the morphologic, imaging, and clinicopathologic characteristics of this entity, as well as its natural course in light of the current literature. Literature search including the years 2000-2022 was conducted in PubMed.

View Article and Find Full Text PDF

Background: Telecytology-assisted rapid on-site evaluation (ROSE) offers a cost-effective method to enhance minimally invasive biopsies like fine needle aspiration and core biopsies with touch preparation. By reducing nondiagnostic sampling and the need for repeat procedures, ROSE via telecytology facilitates prompt triage for ancillary tests, improving patient management. This study examines cases initially deemed adequate for diagnosis during telecytology-assisted ROSE but later categorized as nondiagnostic at final evaluation (NDIS).

View Article and Find Full Text PDF

Image-Based Phenotypic Profiling Enables Rapid and Accurate Assessment of EGFR-Activating Mutations in Tissues from Lung Cancer Patients.

J Am Chem Soc

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China.

Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!