A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design, Implementation, and Evaluation of an N95 Respirator Decontamination and Reuse Program for Healthcare Workers During the COVID-19 Pandemic. | LitMetric

Design, Implementation, and Evaluation of an N95 Respirator Decontamination and Reuse Program for Healthcare Workers During the COVID-19 Pandemic.

Health Secur

Matthew M. Dacso, MD, MSc, is Chair ad interim, Department of Global Health and Emerging Diseases, and an Associate Professor, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX.

Published: February 2023

Early in the COVID-19 pandemic, substantial disruptions in personal protective equipment (PPE) supply chains forced healthcare systems to become resourceful to ensure PPE availability for healthcare workers. Most worrisome was the global shortage of N95 respirators. In response, a collaboration between the Department of Infection Control and Healthcare Epidemiology and the Department of Biosafety at the University of Texas Medical Branch developed a PPE recycling program guaranteeing an adequate supply of respirators for frontline staff. The team successfully developed and implemented a novel workflow that included validated decontamination procedures, education, and training programs as well as transportation, labeling, and storage logistics. In total, 15,995 respirators of various types and sizes were received for recycling. Of these, 12,752 (80%) were recycled. Following the program's implementation, we surveyed 134 frontline healthcare workers who overwhelmingly graded our institution's culture of safety positively. Overall impressions of the N95 respirator recycling program were mixed, although interpretation of those results was limited by a lower survey response rate. In an era of increasing health security threats, innovative recycling programs like this one may serve as a model for other health systems to respond to future PPE supply chain disruptions.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hs.2022.0086DOI Listing

Publication Analysis

Top Keywords

healthcare workers
12
n95 respirator
8
covid-19 pandemic
8
ppe supply
8
recycling program
8
healthcare
5
design implementation
4
implementation evaluation
4
evaluation n95
4
respirator decontamination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!