Polymorphonuclear neutrophils (PMNs) play a critical role in clearing invading microbes and promoting tissue repair following infection/injury. However, dysregulated PMN trafficking and associated tissue damage is pathognomonic of numerous inflammatory mucosal diseases. The final step in PMN influx into mucosal lined organs (including the lungs, kidneys, skin, and gut) involves transepithelial migration (TEpM). The β2-integrin CD11b/CD18 plays an important role in mediating PMN intestinal trafficking, with recent studies highlighting that terminal fucose and GlcNAc glycans on CD11b/CD18 can be targeted to reduce TEpM. However, the role of the most abundant terminal glycan, sialic acid (Sia), in regulating PMN epithelial influx and mucosal inflammatory function is not well understood. Here we demonstrate that inhibiting sialidase-mediated removal of α2-3-linked Sia from CD11b/CD18 inhibits PMN migration across intestinal epithelium in vitro and in vivo. Sialylation was also found to regulate critical PMN inflammatory effector functions, including degranulation and superoxide release. Finally, we demonstrate that sialidase inhibition reduces bacterial peptide-mediated CD11b/CD18 activation in PMN and blocks downstream intracellular signaling mediated by spleen tyrosine kinase (Syk) and p38 MAPK. These findings suggest that sialylated glycans on CD11b/CD18 represent potentially novel targets for ameliorating PMN-mediated tissue destruction in inflammatory mucosal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077474 | PMC |
http://dx.doi.org/10.1172/jci.insight.167151 | DOI Listing |
Int J Mol Sci
November 2024
Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
Extensive evidence indicates that the compromise of airway epithelial barrier function is closely linked to the development of various diseases, posing a significant concern for global mortality and morbidity. Flavonoids, natural bioactive compounds, renowned for their antioxidant and anti-inflammatory properties, have been used for centuries to prevent and treat numerous ailments. Lately, a growing body of evidence suggests that flavonoids can enhance the integrity of the airway epithelial barrier.
View Article and Find Full Text PDFEnviron Anal Health Toxicol
September 2024
Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea.
Front Immunol
November 2024
Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
C-terminal Src kinase (Csk) targets Src family kinases (SFKs) and thereby inactivates them. We have previously shown that Csk binds to phosphorylated tyrosine 685 of VE-cadherin, an adhesion molecule of major importance for the regulation of endothelial junctions. This tyrosine residue is an SFK target, and its mutation (VE-cadherin-Y685F) inhibits the induction of vascular permeability in various inflammation models.
View Article and Find Full Text PDFJ Cell Sci
November 2024
Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK. Electronic address:
Modeling immune cell recruitment by liver endothelial cells in vitro is important to better understand the pathology of chronic inflammatory liver diseases and cancers. Here, we present a protocol for the study of monocyte transmigration across activated primary human liver endothelial cells, under physiological flow conditions. We describe primary endothelial cell isolation from human liver tissues and monocyte isolation from human blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!