Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: This study aimed to apply multifractal detrended fluctuation analysis (MFDFA) to surface EMG to detect neuromuscular changes after realistic warm-up procedures that was followed by various stretching exercises.
Methods: Sixteen volunteers conducted two experimental sessions. Testing included two maximal voluntary contractions before, after a standardized warm-up, and after a stretching exercise (static or neurodynamic nerve gliding technique). EMG was registered on biceps femoris and semitendinosus muscles. EMG was analyzed using different parameters obtained from the singularity Hurst exponent function and multifractal power spectrum (both obtained from the multifractal detrended fluctuation analysis).
Results: The Hurst exponent, α maximum, and peak value of the multifractal spectrum significantly decreased after warm-up as compared with baseline for both biceps femoris ( P = 0.003, P = 0.006, and P = 0.003, respectively) and semitendinosus ( P = 0.006, P = 0.013 and P = 0.01, respectively) muscles. No further alteration was obtained after static or neurodynamic nerve gliding stretching as compared with post-warm-up ( P = 1.0). No significant difference was obtained for Hurst exponent range, width, and asymmetry of the multifractal spectrum ( P > 0.05).
Conclusions: From the present results, EMG depicted multifractal features sensitive to detect neuromuscular changes after a warm-up procedure. An increase in multiscale complexity is revealed after warm-up without any further alteration after stretching. The multifractal spectrum depicted dominant small fluctuations that shifted toward slightly larger fluctuations that could be attributed to motor unit recruitment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000003128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!