Cerebrolysin Attenuates Exacerbation of Neuropathic Pain, Blood-spinal Cord Barrier Breakdown and Cord Pathology Following Chronic Intoxication of Engineered Ag, Cu or Al (50-60 nm) Nanoparticles.

Neurochem Res

International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.

Published: June 2023

Neuropathic pain is associated with abnormal sensations and/or pain induced by non-painful stimuli, i.e., allodynia causing burning or cold sensation, pinching of pins and needles like feeling, numbness, aching or itching. However, no suitable therapy exists to treat these pain syndromes. Our laboratory explored novel potential therapeutic strategies using a suitable composition of neurotrophic factors and active peptide fragments-Cerebrolysin (Ever Neuro Pharma, Austria) in alleviating neuropathic pain induced spinal cord pathology in a rat model. Neuropathic pain was produced by constrictions of L-5 spinal sensory nerves for 2-10 weeks period. In one group of rats cerebrolysin (2.5 or 5 ml/kg, i.v.) was administered once daily after 2 weeks until sacrifice (4, 8 and 10 weeks). Ag, Cu and Al NPs (50 mg/kg, i.p.) were delivered once daily for 1 week. Pain assessment using mechanical (Von Frey) or thermal (Hot-Plate) nociceptive showed hyperalgesia from 2 weeks until 10 weeks progressively that was exacerbated following Ag, Cu and Al NPs intoxication in nerve lesioned groups. Leakage of Evans blue and radioiodine across the blood-spinal cord barrier (BSCB) is seen from 4 to 10 weeks in the rostral and caudal cord segments associated with edema formation and cell injury. Immunohistochemistry of albumin and GFAP exhibited a close parallelism with BSCB leakage that was aggravated by NPs following nerve lesion. Light microscopy using Nissl stain exhibited profound neuronal damages in the cord. Transmission electron microcopy (TEM) show myelin vesiculation and synaptic damages in the cord that were exacerbated following NPs intoxication. Using ELISA spinal tissue exhibited increased albumin, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP) and heat shock protein (HSP 72kD) upregulation together with cytokines TNF-α, IL-4, IL-6, IL-10 levels in nerve lesion that was exacerbated following NPs intoxication. Cerebrolysin treatment significantly reduced hyperalgesia and attenuated BSCB disruption, edema formation and cellular changes in nerve lesioned group. The levels of cytokines were also restored near normal levels with cerebrolysin treatment. Albumin, GFAP, MABP and HSP were also reduced in cerebrolysin treated group and thwarted neuronal damages, myelin vesiculation and cell injuries. These neuroprotective effects of cerebrolysin with higher doses were also effective in nerve lesioned rats with NPs intoxication. These observations suggest that cerebrolysin actively protects spinal cord pathology and hyperalgesia following nerve lesion and its exacerbation with metal NPs, not reported earlier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119268PMC
http://dx.doi.org/10.1007/s11064-023-03861-8DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
16
nps intoxication
16
cord pathology
12
exacerbated nps
12
nerve lesioned
12
nerve lesion
12
cord
8
blood-spinal cord
8
cord barrier
8
pain induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!