Mesoporous silica nanoparticles (MSNs) are promising nanomaterials that are widely used in biomedical applications like drug delivery, diagnosis, bio-sensing and cell tracking. MSNs have been investigated meticulously in the drug-delivery field due to their unique chemical and pharmacokinetic properties, such as highly ordered mesopores, high surface area and pore volume, tuneable pore size, stability, surface functionalisation, and biocompatibility. MSN-based nanocomposites have been used to deliver therapeutic molecules like insulin, GLP-1, exenatide, DPP-4 inhibitor and plasmid-containing GLP-1 genes for managing diabetes mellitus for the last decade. The functionalisation properties of MSNs make them substantially capable of the co-delivery, controlled delivery and stimuli-responsive delivery of antidiabetic drugs. This review focuses on the delivery of antidiabetic therapeutics with special emphasis on the functionalisation of MSNs and stimuli-responsive delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202200672 | DOI Listing |
Int J Pharm
January 2025
Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China. Electronic address:
The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States.
measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, University of Botswana, Botswana Private bag UB, Gaborone, 00704, Botswana.
This study explores the synthesis of ZSM-5 zeolite using high-purity mesoporous silica exclusively derived from coal fly ash (CFA), eliminating the need for additional silica or alumina sources. Traditional ZSM-5 synthesis relies on costly and environmentally harmful pure chemicals, whereas this approach utilizes CFA, an industrial byproduct, addressing both cost and sustainability concerns. The synthesized ZSM-5 zeolite demonstrates exceptional purity, with a surface area of 455.
View Article and Find Full Text PDFMetal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.
The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!