Lignin, the world's largest resource of renewable aromatics, with annually roughly 50 million tons of accruing technical lignin, mainly Kraft lignin, is highly underdeveloped regarding the production of monoaromatics. We demonstrate the oxidative depolymerization of Kraft lignin at 180 °C to produce vanillin 1 in yields up to 6.2 wt % and 92 % referred to the maximum yield gained from the quantification reaction utilizing nitrobenzene. Using peroxodicarbonate (C O ) as "green" oxidizer for the degradation, toxic and/or harmful reagents are prevented. Also, the formed waste can serve as makeup chemical in the pulping process. Na C O is synthesized in an ex-cell electrolysis of aqueous Na CO at BDD anodes, achieving a yield of Na C O with 41 %. At least, the oxidation and degradation of Kraft lignin is analysis via UV/Vis and NMR spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202219217 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Forest Science (ICIFOR-INIA), CSIC, Ctra. de la Coruña, km 7,5, 28040, Madrid, Spain.
In the search of new bioactive and biobased films, the use of lignin nanoparticles (LNP) and cellulose nanofibers (CNF) has gained potential relevance in the last years. In this context, an enzymatic and environmentally friendly pretreatment with laccases has been proposed in this work to modify the properties of the developed cellulose-lignin nanocomposite films. Thus, the laccase treatment successfully polymerized kraft lignin as indicated by the increase in weight average molecular weight (from 3621 to 5681 Da) and the reduction in phenol content (from 552 to 324 mg GAE/g lignin).
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China.
A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Energy and Environment, City University of Hong Kong, Hong Kong, China. Electronic address:
Hydrophilic phenol-formaldehyde (PF) foams, widely used in floral and hydroponic applications, are produced using phenol typically derived from non-renewable petroleum-based resources. This study examines the potential of depolymerized Kraft lignin (DKL) as a sustainable substitute for phenol in the synthesis of hydrophilic biobased foams. At 50 % DKL substitution, the foams demonstrated excellent water absorption capacities (up to 2557 %), relatively low densities (∼62 kg/m), and nearly 100 % open-cell content.
View Article and Find Full Text PDFJ Microbiol Methods
January 2025
Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-234 56 Alnarp, Sweden. Electronic address:
In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Life Sciences and Systems Biology, University of Torino, Italy.
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!