This work investigates the acid sites in a commercial ZSM-5 zeolite catalyst by a combination of spectroscopic and physical methods. The Brønsted acid sites in such catalysts are associated with the aluminum substituted into the zeolite lattice, which may not be identical to the total aluminum content of the zeolite. Inelastic neutron scattering spectroscopy (INS) directly quantifies the concentrations of Brønsted acid protons, silanol groups, and hydroxyl groups associated with extra-framework aluminum species. The INS measurements show that ∼50% of the total aluminum content of this particular zeolite is extra framework, a conclusion supported by solid-state NMR and ammonia temperature-programmed desorption (TPD) measurements. Evidence for the presence of extra-framework aluminum oxide species is also seen in neutron powder diffraction data from proton- and deuterium-exchanged samples. The differences between results from the different analytical methods are discussed, and the novelty of direct proton counting by INS in this typical commercial catalyst is emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881239PMC
http://dx.doi.org/10.1021/acsphyschemau.2c00040DOI Listing

Publication Analysis

Top Keywords

acid sites
12
sites commercial
8
commercial zsm-5
8
zsm-5 zeolite
8
zeolite catalyst
8
brønsted acid
8
total aluminum
8
aluminum content
8
content zeolite
8
extra-framework aluminum
8

Similar Publications

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.

View Article and Find Full Text PDF

Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation.

View Article and Find Full Text PDF

Tyrosine-modified tilapia skin antioxidant peptides and their hydroxyl radical quenching activities.

J Mater Chem B

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

In an antioxidant peptide study, the number and position of active amino acid sites, as well as the peptides' conformation, are found to be crucial for scavenging hydroxyl radicals (˙OH). Herein, ˙the OH scavenging activity of tilapia pentapeptide (P1, YGDQY) and its analogs including P2 (YYYGDQY), P3 (YYGDQYY) and P4 (YYGPDQYY) was investigated. The results showed that the tyrosine's amount, location and the peptides' conformation played important roles in determining peptides' scavenging activity (34.

View Article and Find Full Text PDF

Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!