Angew Chem Int Ed Engl
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea.
Published: March 2023
Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the β-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202218794 | DOI Listing |
J Am Chem Soc
January 2025
Organisch-Chemisches Institut, Universität Münster, Münster 48149, Germany.
Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
Org Lett
October 2024
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Chiral phosphorus compounds with contiguous ,-stereogenic centers are widely found in chiral ligands. The synthesis of these skeletons has been scarcely reported. Herein, we developed a Pd(II)-catalyzed chemo-, diastereo-, and enantioselective arylation of diisopropyl phosphinamide enabled by 2-pyridinylisopropyl (PIP) auxiliary and ()-6,6'-(CN)-SPINOL.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.