Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investigated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized granule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen production in the bioreactor with porous immobilized granules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2016.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!