Background: Nonalcoholic fatty liver, or NAFLD, is the most common chronic liver ailment. It is characterized by excessive fat deposition in hepatocytes of individuals who consume little or no alcohol and are unaffected by specific liver damaging factors. It is also associated with extrahepatic manifestations such as chronic kidney disease, cardiovascular disease, and sleep apnea. The global burden of NAFLD is increasing at an alarming rate. However, no pharmacologically approved drugs against NAFLD are available owing to their complex pathophysiology. Genome-wide association studies have uncovered SNPs in the fat mass and obesity-associated gene (FTO) that are robustly associated with obesity and higher BMI. The prevalence of NAFLD increases in parallel with the increasing prevalence of obesity. Since FTO might play a crucial role in NAFLD development, the current study identified five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools.
Methods: This study aims to identify potentially deleterious nonsynonymous SNPs (ns-SNPs) employing various in silico tools. Additionally, molecular modeling approaches further studied the structural changes caused by identified SNPs. Moreover, molecular dynamics studies finally investigated the binding potentials of the phytochemicals resveratrol, rosmarinic acid, and capsaicin with different mutant forms of FTO.
Results: The current investigation has five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. The present study identified five nsSNPs of the human gene FTO, Gly103Asp, Arg96Pro, Tyr295Cys, and Arg322Gln, with an apparent connection to the disease condition. Modulation of demethylation activity by phytomolecule scanning explains the hepatoprotective action of molecules. The current investigation also suggested that predicted mutations did not affect the binding ability of three polyphenols: rosamarinic acid, resveratrol, and capsaicin.
Conclusion: This study showed that the predicted mutations in FTO did not affect the binding of three polyphenols. Thus, these three molecules can significantly aid drug development against FTO and NAFLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885621 | PMC |
http://dx.doi.org/10.1186/s12944-023-01782-7 | DOI Listing |
Insects
January 2025
Department of Plant Protection, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
(Hendel) is an invasive fruit and vegetable pest, infesting citrus, mango, carambola, etc. We observed that the posterior thoracic scutella of some adults are yellow, some light yellow, and some white in China. Compared with the races with a yellow scutellum (YS) and white scutellum (WS), the race with a light-yellow scutellum (LYS) is dominant in citrus and carambola orchards.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.
View Article and Find Full Text PDFSci Rep
January 2025
Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
Dopamine receptor D4 (DRD4) plays a vital role in regulating various physiological functions, including attention, impulse control, and sleep, as well as being associated with various neurological diseases, including attention deficit hyperactivity disorder, novelty seeking, and so on. However, a comprehensive analysis of harmful nonsynonymous single nucleotide polymorphisms (nsSNPs) of the DRD4 gene and their effects remains unexplored. The aim of this study is to uncover novel damaging missense nsSNPs and their structural and functional effects on the DRD4 receptor.
View Article and Find Full Text PDFPLoS One
January 2025
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
In watermelon (Citrullus lanatus), lesion mimic is a rare, valuable trait that can be used by breeders for selection at early growth stages. In this study, we tested a seven-generation family to determine the inheritance and genetic basis of this trait. As revealed by analysis of the lesion mimic mutant clalm, this trait is controlled by a single dominant gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!