A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-linear dose response effect of cathodal transcranial direct current stimulation on muscle strength in young healthy adults: a randomized controlled study. | LitMetric

Non-linear dose response effect of cathodal transcranial direct current stimulation on muscle strength in young healthy adults: a randomized controlled study.

BMC Sports Sci Med Rehabil

Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170, Thailand.

Published: January 2023

Background: Transcranial direct current stimulation (tDCS) is a technique that modulates brain excitability in humans. Increasing the stimulation intensity or duration within certain limits could enhance tDCS efficacy with a polarity-dependent effect; anodal stimulation increases cortical excitability, whereas cathodal stimulation decreases excitability. However, recent studies have reported a non-linear effect of cathodal tDCS on neuronal excitability in humans, and there is no conclusive result regarding the effect of cathodal tDCS on muscle performance.

Methods: Our study aimed to investigate the immediate effects of different intensities (i.e., 1, 1.5, and 2 mA and sham tDCS) of cathodal tDCS on muscle strength in healthy participants. All participants [mean age 23.17 (3.90) years] were recruited and randomly allocated into four groups (1, 1.5, and 2 mA cathodal tDCS and sham tDCS). Muscle strength in bilateral upper and lower extremities was measured before and immediately after tDCS using a handheld dynamometer.

Results: Our results showed that cathodal tDCS at 1 and 1.5 mA reduced muscle strength bilaterally in upper and lower extremity muscles, whereas stimulation at 2 mA tended to increase muscle strength on the dominant limb.

Conclusion: These findings support the non-linear effects of cathodal tDCS on muscle strength, which should be considered for the clinical use of tDCS in motor rehabilitation.

Trial Registration: NCT04672122, date of first registration 17/12/2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887803PMC
http://dx.doi.org/10.1186/s13102-023-00621-7DOI Listing

Publication Analysis

Top Keywords

muscle strength
24
cathodal tdcs
24
tdcs muscle
16
tdcs
12
cathodal
8
transcranial direct
8
direct current
8
current stimulation
8
excitability humans
8
sham tdcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!