Background: Every year, more than 2.5 million critically ill patients in the ICU are dependent on mechanical ventilation. The positive pressure in the lungs generated by the ventilator keeps the diaphragm passive, which can lead to a loss of myofibers within a short time. To prevent ventilator-induced diaphragmatic dysfunction (VIDD), phrenic nerve stimulation may be used.

Objective: The goal of this study is to show the feasibility of transesophageal phrenic nerve stimulation (TEPNS). We hypothesize that selective phrenic nerve stimulation can efficiently activate the diaphragm with reduced co-stimulations.

Methods: An in vitro study in saline solution combined with anatomical findings was performed to investigate relevant stimulation parameters such as inter-electrode spacing, range to target site, or omnidirectional vs. sectioned electrodes. Subsequently, dedicated esophageal electrodes were inserted into a pig and single stimulation pulses were delivered simultaneously with mechanical ventilation. Various stimulation sites and response parameters such as transdiaphragmatic pressure or airway flow were analyzed to establish an appropriate stimulation setting.

Results: Phrenic nerve stimulation with esophageal electrodes has been demonstrated. With a current amplitude of 40 mA, similar response figures of the diaphragm activation as compared to conventional stimulation with needle electrodes at 10mA were observed. Directed electrodes best aligned with the phrenic nerve resulted in up to 16.9 % higher amplitude at the target site in vitro and up to 6 cmH20 higher transdiaphragmatic pressure in vivo as compared to omnidirectional electrodes. The activation efficiency was more sensitive to the stimulation level inside the esophagus than to the inter-electrode spacing. Most effective and selective stimulation was achieved at the level of rib 1 using sectioned electrodes 40 mm apart.

Conclusion: Directed transesophageal phrenic nerve stimulation with single stimuli enabled diaphragm activation. In the future, this method might keep the diaphragm active during, and even support, artificial ventilation. Meanwhile, dedicated sectioned electrodes could be integrated into gastric feeding tubes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885573PMC
http://dx.doi.org/10.1186/s12938-023-01071-5DOI Listing

Publication Analysis

Top Keywords

phrenic nerve
28
nerve stimulation
24
stimulation
13
transesophageal phrenic
12
sectioned electrodes
12
feasibility transesophageal
8
mechanical ventilation
8
inter-electrode spacing
8
target site
8
electrodes
8

Similar Publications

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Impact of under-assisted ventilation on diaphragm function and structure in a porcine model.

Anesthesiology

January 2025

Department of Anesthesiology and Critical Care Medicine B (DAR B), Saint-Eloi Hospital, University Teaching Hospital of Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, France.

Background: Long-term controlled mechanical ventilation (CMV) in intensive care unit (ICU) induces ventilatory-induced-diaphragm-dysfunction (VIDD). The transition from CMV to assisted mechanical ventilation is a challenge that requires clinicians to balance over-assistance and under-assistance. While the effects of over-assistance on the diaphragm are well known, we aimed to assess the impact of under-assistance on diaphragm function and structure in piglet model with pre-existing VIDD (after long-term CMV) or without VIDD (short-term CMV).

View Article and Find Full Text PDF

Results of ICE-Guided Isolation of the Superior Vena Cava With Pulsed Field Ablation.

JACC Clin Electrophysiol

January 2025

Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, California, USA; Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy. Electronic address:

Background: Earlier studies have documented the risk for sinoatrial node injury and phrenic nerve paralysis as complications following radiofrequency catheter ablation for electrical isolation of the superior vena cava (SVCI).

Objectives: The aim of this study was to assess the safety and feasibility of SVCI in patients with atrial fibrillation undergoing pulsed field ablation (PFA) METHODS: Six hundred sixteen consecutive patients undergoing PFA for pulmonary vein isolation plus SVCI were included in this multicenter analysis. Superior vena cava (SVC) ablation was performed under the continuous guidance of intracardiac echocardiography.

View Article and Find Full Text PDF

Comparative the impact intraoperative phrenic nerve sacrifice on prognosis patients with thymoma.

BMC Pulm Med

January 2025

Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No 9, Bei guan Street, Tong Zhou District, Beijing, 101149, P. R. China.

Objectives: Complete removal of the tumor and surrounding tissue is the most important prognostic factor such as survival after surgery. When the tumor invades the phrenic nerve, the impact of intraoperative phrenic nerve sacrifice on the short- and long-term prognosis of patients is not clear. This study aims to explore the differences in prognosis between patients with malignant thymoma with and without phrenic nerve sacrifice during surgery, as well as analyze related factors.

View Article and Find Full Text PDF

Dyspnea with Hemidiaphragm Elevation in a Patient with Giant Cell Arteritis: A Case Report.

Intern Med

January 2025

Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Japan.

We herein report the first case of dyspnea with hemidiaphragm elevation in a 68-year-old woman with active giant cell arteritis (GCA), including successful treatment. Contrast-enhanced computed tomography showed a reduced density of the left ophthalmic artery and the left superficial temporal artery with increased soft tissue compared to the other side, indicating that the GCA had flared up and suggesting that the hemidiaphragm elevation might be caused by vasculitis-associated ischemia of the right phrenic nerve. Hemidiaphragm paralysis due to vasculitis-associated ischemia in patients with GCA needs to be distinguished from local infection, tumors, and hepatomegaly, which are the major causes of hemidiaphragm elevation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!