AI Article Synopsis

  • Ice streams flowing into the Ross Ice Shelf are supported by a complex system of water-saturated sediments and subglacial lakes, which influence microbial life downstream in the West Antarctic Ice Sheet.
  • Recent research at Mercer Subglacial Lake identified high microbial abundance in surface sediments, with distinct communities compared to deeper layers, primarily consisting of chemolithoautotrophs that utilize reduced compounds.
  • The study reveals a subglacial metacommunity linked through ice sheet dynamics, with sediment characteristics such as organic carbon and methane levels significantly shaping microbial diversity and community composition.

Article Abstract

Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (-25 to -30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886901PMC
http://dx.doi.org/10.1038/s43705-023-00216-wDOI Listing

Publication Analysis

Top Keywords

subglacial lake
12
community composition
8
mercer subglacial
8
ice sheet
8
ice stream
8
sediments
7
ice
6
subglacial
5
biogeochemical historical
4
historical drivers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!