Nanogap biosensors have emerged as promising platforms for detecting and measuring biochemical substances at low concentrations. Although the nanogap biosensors provide high sensitivity, low limit of detection (LOD), and enhanced signal strength, it requires arduous fabrication processes and costly equipment to obtain micro/nanoelectrodes with extremely narrow gaps in a controlled manner. In this work, we report the novel design and fabrication processes of vertical nanogap structures that can electrically detect and quantify low-concentration biochemical substances. Approximately 40 nm gaps are facilely created by magnetically assembling antibody-coated nanowires onto a nanodisk patterned between a pair of microelectrodes. Analyte molecules tagged with conductive nanoparticles are captured and bound to nanowires and bridge over the nanogaps, which consequently causes an abrupt change in the electrical conductivity between the microelectrodes. Using biotin and streptavidin as model antibodies and analytes, we demonstrated that our nanogap biosensors can effectively measure the protein analytes with the LOD of ∼18 pM. The outcome of this research could inspire the design and fabrication of nanogap devices and nanobiosensors, and it would have a broad impact on the development of microfluidics, biochips, and lab-on-a-chip architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c02879 | DOI Listing |
J Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
() is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Chemistry, Hankuk University of Foreign Studies (HUFS), Yongin 17035, Republic of Korea.
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610064, China. Electronic address:
Various surface-enhanced Raman scattering (SERS) biosensors offer powerful tools for the ultrasensitive detection of circulating tumor cells (CTCs) and tumor diagnosis. Despite their efficacy, the swift and precise preparation of SERS plasmonic nanostructures poses an ongoing challenge. In this study, we introduce DNA-assisted plasmonic nanostructures capable of producing dual signals and facilitating DNA Walker signal amplification, resulting in the development of a SERS/Fluorescent (FL) dual-mode cytosensor for CTCs detection.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:
The primary challenge hindering the broad application of surface-enhanced Raman scattering (SERS) is the variability in substrate performance due to site differences, leading to unstable detection results. Thus, the current work reports the constant potential deposition of gold (Au) nanostructure on a hybrid nanoporous gold (npAu)-Au mirror template to generate highly stable monolithic Au-saturated npAu@Au-mirror substrate. By systematically adjusting electrochemical variables, different sizes, shapes, and nanogaps of Au nanostructure are generated with high-intensity electromagnetic field regions (hot junctions) for enhanced SERS response.
View Article and Find Full Text PDFACS Sens
October 2024
Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!