Horse manure as resource for biogas and nanolignocellulosic fibres.

Bioresour Technol

Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom. Electronic address:

Published: March 2023

Nanofibrillated cellulose (NFC) has key applications in composites, water filters and as emulsifiers. The affinity of NFC to water is a challenge, as it negatively influences its integrity. Lignin, a major component of plant biomass, is a natural hydrophobiser. Anaerobic digestion (AD) of biomass to produce biomethane allows to up-concentrate lignin in the fermentation residue containing lignocellulosic fibres. Horse manure was used as substrate for biogas production from which nanolignocellulose fibres (LCNF) were extracted. A biogas yield of 207 L kg with a methane concentration of 65 % was achieved. From the fermentation residue LCNFs, in yields of up to 41 %, with lignin contents between 23 and 29 wt% depending on fermentation time were obtained. Nanopapers produced from LCNFs possessed tensile strengths and moduli of 45 to 91 MPa and 7 to 8 GPa, respectively. The increased lignin content was responsible for decreased water absorption capacity of nanopapers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128688DOI Listing

Publication Analysis

Top Keywords

horse manure
8
fermentation residue
8
manure resource
4
resource biogas
4
biogas nanolignocellulosic
4
nanolignocellulosic fibres
4
fibres nanofibrillated
4
nanofibrillated cellulose
4
cellulose nfc
4
nfc key
4

Similar Publications

There is an important gap in how variations in herbivore dung composition affect GHG emissions on pastures, especially due to differences in dry matter (DM) and nitrogen contents. Oversimplifications can compromise the accuracy of mitigation strategies. This study aims to address this gap by investigating how the chemical composition of dung from different species influences GHG emissions in pasture systems.

View Article and Find Full Text PDF

Cofactor F is an electron carrier playing a crucial role in a variety of microorganisms during redox reactions of the primary and secondary metabolism due to its low redox potential and thus arouses increasing interest. In this study, cofactor F glutamyl tail length spectra in various habitats like manure, compost, soil, and digester sludge samples and their respective microbial communities were investigated using high performance liquid chromatography and an amplicon sequencing approach A previous study was used to identify F producing microorganisms. The highest concentration of cofactor F could be achieved in the horse manure, digester sludge, and mixed manure samples, which was approximately 100-fold higher than in all the other samples.

View Article and Find Full Text PDF

Five epidemiological aspects of ASF were evaluated using literature reviews, field studies, questionnaires and mathematical models. First, a literature review and a case-control study in commercial pig farms emphasised the importance of biosecurity and farming practices, including the spread of manure around farms and the use of bedding material as risk factors, while the use of insect nets was a protective factor. Second, although wild boar density is a relevant known factor, the statistical and mechanistic models did not show a clear and consistent effect of wild boar density on ASF epidemiology in the selected scenarios.

View Article and Find Full Text PDF

Growth media change Eisenia fetida epithelium thickness: implications for improving earthworm welfare in vermicomposting systems.

Environ Sci Pollut Res Int

November 2024

Departamento de Ecología y Biología Animal, Universidad de Vigo, 36310, Vigo, Spain.

Because the earthworm tegument represents their first barrier against environmental aggressions, we hypothesised that substrate-induced changes in earthworm growth would also alter the morphology of this protective layer. Therefore, a histological and morphometric study was performed on Eisenia fetida specimens that have been grown in five different organic residues: cow manure, horse manure, grape marc, coffee grounds, and a mixture of coffee grounds and cooking oil. The results showed that, across all treatments, both cuticle and epidermis were significantly thicker in the pre-clitellar region than after the clitellum, attributed to the fact that the former region is responsible for breaking up the soil.

View Article and Find Full Text PDF
Article Synopsis
  • During the composting process, nitrogen is lost mainly through gases and water leaching, but biochar can capture some of this nitrogen and potentially reduce emissions of nitrous oxide (NO).
  • A study involved composting kitchen scraps, horse manure, and wheat straw with and without biochar to examine its effects on greenhouse gas emissions and nitrogen retention over nearly 150 days.
  • Though biochar did not significantly decrease greenhouse gas emissions or nitrogen content, it did retain nitrogen more effectively and showed higher final amounts of extractable nitrogen, indicating its potential for nitrogen recovery without increasing greenhouse gas emissions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!