InP/ZnS quantum dots cause liver damage in rare minnow (Gobiocypris rarus) larvae.

Comp Biochem Physiol C Toxicol Pharmacol

Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China. Electronic address:

Published: April 2023

InP/ZnS quantum dots (QDs) are widely used in biomedical imaging and light-emitting component manufacturing industries, but there are few studies on their biological toxicity. In this study, we conducted experiments with rare minnow larvae and found that InP/ZnS QDs can cause liver damage. InP/ZnS QDs appeared only in the intestine of larvae and were not enriched in other parts of the larvae. The activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (AKP) increased, while the decrease in bile acid. InP/ZnS QDs caused hepatic cell nuclear lysis, abnormal cytoplasmic staining, and mitochondrial cristae reduction, swelling, and fragmentation. RNA-sequencing results revealed that InP/ZnS QDs exposure treatment affected the expression of genes involved in lipid metabolism, sterol synthesis, bile acid synthesis and other pathways. The excessive production of reactive oxygen species (ROS) induced by InP/ZnS QDs may be the main source of toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2023.109546DOI Listing

Publication Analysis

Top Keywords

inp/zns qds
20
inp/zns quantum
8
quantum dots
8
liver damage
8
rare minnow
8
larvae inp/zns
8
bile acid
8
inp/zns
7
qds
6
dots liver
4

Similar Publications

High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.

View Article and Find Full Text PDF

Elementary Exciton Processes of InP/ZnS Quantum Dots Under Applied Pressure.

Nano Lett

January 2025

Graduate School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.

In colloidal quantum dots (QDs), excitons are confined within nanoscale dimensions, and the relaxation of hot electrons occurs through Auger cooling. The behavior of hot electrons is evident under ambient pressure. Nanocrystal characteristics, including their size, are key to determining hot electron behavior because they serve as the stage.

View Article and Find Full Text PDF

PEGylation of indium phosphide quantum dots prevents quantum dot mediated platelet activation.

J Mater Chem B

January 2025

Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.

Article Synopsis
  • Quantum dots (QDs) are small semiconductor particles that could improve biomedical imaging and drug delivery, with Indium phosphide QDs covered by zinc sulphide being a more biocompatible option.
  • This study reveals that PEGylating these QDs significantly reduces platelet activation and aggregation, which is important to prevent excessive blood clotting.
  • By decreasing the interaction between QDs and platelets, PEGylation enhances the safety and effectiveness of QDs for use in medical applications.
View Article and Find Full Text PDF

Nanoparticles (NPs) continue to be developed as labels for bioanalysis and imaging due to their small size and, in many cases, emergent properties such as photoluminescence (PL) and superparamagnetism. Some applications stand to benefit from amplification of the advantageous properties of a NP, but this amplification is not a simple matter of scaling for size-dependent properties. One promising approach to amplification is, therefore, to assemble many copies of a NP into a larger but still nanoscale and colloidal entity.

View Article and Find Full Text PDF

Quantum Dots-caused Retinal Degeneration in Zebrafish Regulated by Ferroptosis and Mitophagy in Retinal Pigment Epithelial Cells through Inhibiting Spliceosome.

Adv Sci (Weinh)

December 2024

Department of Ophthalmology in Xiang'an Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.

Quantum dots (QDs) are widely used, but their health impact on the visual system is little known. This study aims to elucidate the effects and mechanisms of typical metallic QDs on retinas using zebrafish. Comprehensive histology, imaging, and bulk RNA sequencing reveal that InP/ZnS QDs cause retinal degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!