Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations.

Pharmacol Biochem Behav

Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil. Electronic address:

Published: February 2023

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by a persistent impairment of social skills, including aspects of perception, interpretation, and response, combined with restricted and repetitive behavior. ASD is a complex and multifactorial condition, and its etiology could be attributed to genetic and environmental factors. Despite numerous clinical and experimental studies, no etiological factor, biomarker, and specific model of transmission have been consistently associated with ASD. However, an imbalance in cholesterol levels has been observed in many patients, more specifically, a condition of hypocholesterolemia, which seems to be shared between ASD and ASD-related genetic syndromes such as fragile X syndrome (FXS), Rett syndrome (RS), and Smith- Lemli-Opitz (SLO). Furthermore, it is known that alterations in cholesterol levels lead to neuroinflammation, oxidative stress, impaired myelination and synaptogenesis. Thus, the aim of this review is to discuss the cholesterol metabolic pathways in the ASD context, as well as in genetic syndromes related to ASD, through clinical observations and animal models. In fact, SLO, FXS, and RS patients display early behavioral markers of ASD followed by cholesterol disturbances. Several studies have demonstrated the role of cholesterol in psychiatric conditions and how its levels modulate brain neurodevelopment. This review suggests an important relationship between ASD pathology and cholesterol metabolism impairment; thus, some strategies could be raised - at clinical and pre-clinical levels - to explore whether cholesterol metabolism disturbance has a generally adverse effect in exacerbating the symptoms of ASD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2023.173522DOI Listing

Publication Analysis

Top Keywords

cholesterol metabolism
12
asd
9
cholesterol
8
autism spectrum
8
spectrum disorder
8
animal models
8
clinical observations
8
cholesterol levels
8
genetic syndromes
8
metabolism pathway
4

Similar Publications

Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.

View Article and Find Full Text PDF

The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10).

View Article and Find Full Text PDF

The ternary complex of PGRMC1-σ2R/TMEM97-LDLR has recently been discovered and plays a role in cholesterol transport. This study investigated whether individual components of that complex are prognostic breast cancer biomarkers and defined expression in established molecular subtypes. 4,463 invasive breast cancers were analyzed as a function of molecular and phenotypic markers, estimates of cellular proliferation, and recurrence-free survival.

View Article and Find Full Text PDF

Rationale: Established coronary artery disease (CAD) patients are at increased risk for recurrence of cardiovascular events and mortality due to non-attainment of recommended risk factor control targets.

Objective: We aimed to evaluate the attainment of treatment targets for risk factor control among CAD patients as recommended in the Indonesian CVD prevention guidelines.

Methods: Patients were consecutively recruited from the Makassar Cardiac Center at Wahidin Sudirohusodo Hospital, Indonesia.

View Article and Find Full Text PDF

( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!