Aims: Chronic kidney disease (CKD) is a growing fatal health problem worldwide associated with vascular calcification. Therapeutic approaches are limited with higher costs and poor outcomes. Adenine supplementation is one of the most relevant CKD models to human. Insufficient Nitric Oxide (NO)/ cyclic Guanosine Monophosphate (cGMP) signaling plays a key role in rapid development of renal fibrosis. Natural products display proven protection against CKD. Current study therefore explored isoliquiritigenin, a bioflavonoid extracted from licorice roots, potential as a natural activator for soluble Guanylate Cyclase (sGC) in a CKD rat model.
Materials And Methods: 60 male Wistar rats were grouped into Control group (n = 10) and the remaining rats received adenine (200 mg/kg, p.o) for 2 wk to induce CKD. They were equally sub-grouped into: Adenine untreated group and 4 groups orally treated by isoliquiritigenin low or high dose (20 or 40 mg/kg) with/without a selective sGC inhibitor, ODQ (1-H(1,2,4)oxadiazolo(4,3-a)-quinoxalin-1-one, 2 mg/kg, i.p) for 8 wk.
Key Findings: Long-term treatment with isoliquiritigenin dose-dependently and effectively amended adenine-induced chronic renal and endothelial dysfunction. It not only alleviated renal fibrosis and apoptosis markers but also aortic calcification. Additionally, this chalcone neutralized renal inflammatory response and oxidative stress. Isoliquiritigenin beneficial effects were associated with up-regulation of serum NO, renal and aortic sGC, cGMP and its dependent protein kinase (PKG). However, co-treatment with ODQ antagonized isoliquiritigenin therapeutic impact.
Significance: Isoliquiritigenin seems to exert protective effects against CKD and vascular calcification by activating sGC, increasing cGMP and its downstream PKG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.121460 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Mitodicure GmbH, Kriftel, Germany.
Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.
View Article and Find Full Text PDFJ Pharmacol Sci
January 2025
Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan.
Nitric oxide (NO)-donor drugs, which stimulate reduced form of soluble guanylate cyclase (sGC), have different efficacy to the arteries and veins. This study examined whether sGC activators, which activate oxidized/apo sGC, also have arteriovenous selectivity similar to that of NO-donor drugs. The mechanical responses of the isolated blood vessels were assessed using the organ chamber technique and protein expression was verified using western blotting.
View Article and Find Full Text PDFNephrol Dial Transplant
December 2024
Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany.
Background And Hypothesis: In chronic kidney disease (CKD) the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway is impaired. Runcaciguat, an sGC activator, activates heme-free sGC, restoring cGMP production. This phase 2a trial studied the efficacy, safety, and tolerability of runcaciguat in CKD patients with or without sodium-glucose co-transporter-2 inhibitor (SGLT2i).
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China. Electronic address:
Ethnopharmacological Relevance: Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFNitric Oxide
December 2024
Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!