The synergistic effect of high microporosity and abundant heteroatoms is important for improving the performance of biochar in various fields. However, it is still challenging to create enough micropores for biochar, while simultaneously retaining the heteroatoms from biomass. A series of biochar with variable microstructures was successfully prepared by carbonization and following ball milling on lotus pedicel (LP), watermelon rind (WR), and litchi rind (LR). The pore structures and heteroatoms of biochar were characterized in detail. Notably, high microporosity could be realized by the carbonization of LR, and further ball milling resulted in a higher microporous surface area (1323.4 m·g) and richer oxygen. Furthermore, the obtained biochar was fabricated as solid phase microextraction (SPME) coatings with uniform morphologies and similar thicknesses to deeply investigate the relationships between the microstructures and extraction performance. The best performance was demonstrated by the LR800BM, with enrichment factors from 1780 to 155,217. Finally, it was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an analytical method with a wide linear range (1-50,000 ng·L), low limits of detection (0.10-1.4 ng·L), good repeatability (0.83 %-7.5 %) and reproducibility (4.2 %-8.9 %). This work provides valuable insights into the structure-performance relationship of biochar, which is important for the design of high-performance biochar-based adsorbents and their applications in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.161840 | DOI Listing |
Anal Chim Acta
February 2025
School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:
Background: Sample preparation can be a critical stage of analytical procedures that profoundly influences their performance, environmental impact, and overall efficiency. While nanomaterials have revolutionized sample preparation owing to their high surface area-to-volume ratios, tunable surface chemistry, and enhanced adsorption capacities, limitations persist. Researchers have ushered in a new era of efficient sample preparation methodologies that could overcome the limitations of nanomaterials by introducing deep eutectic solvents (DESs), which have unique advantages such as low volatility and toxicity, biodegradability, and tunability.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Pharmaceutical Chemistry, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland.
Background: Benzodiazepine abuse remains a significant public health concern. Current sample preparation methods for benzodiazepine analysis from human serum often involve complex procedures that require large sample volumes and extensive organic solvent use. To address these limitations, this study presents a novel and efficient sample preparation method utilizing 3D-printed sorbent devices.
View Article and Find Full Text PDFToxicon
January 2025
Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil. Electronic address:
Amphibian skin is a rich source of molecules with biotechnological potential, including the tryptophyllin family of peptides. Here, we report the identification and characterization of two tryptophyllin peptides, FPPEWISR and FPWLLS-NH, from the skin of the Central Dwarf Frog, Physalaemus centralis. These peptides were identified through cDNA cloning and sequence comparison.
View Article and Find Full Text PDFFood Chem
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, People's Republic of China. Electronic address:
An efficient and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MSMS) method was developed for simultaneous determination of 5 alternaria toxins (ATs) in edible and medicinal plant - peppermint using MOF-808-trifluoroacetic acid (MOF-808-TFA) as the adsorbent. Characterization methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N adsorption-desorption demonstrated that the synthesized MOF-808-TFA had a regular ortho-octahedral configuration and high specific surface area. Under the optimal conditions, the 5 ATs showed good linearity (R ≥ 0.
View Article and Find Full Text PDFFood Chem
December 2024
Section of Food, Biochemical, Physiological and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
Grape pomace (GP) is recognized as a valuable source of polyphenols, prompting research into new therapeutic molecules while enhancing this by-product value. To address low stability and bioavailability issues of phenolic compounds, lamellar solids emerge as a promising approach for their loading and stabilization in food, cosmetic, and pharmaceutical applications. A solid phase adsorption procedure was developed here by comparing the properties of eight solids towards GP polyphenols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!