A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of biomarkers for risk assessment of arsenicosis based on untargeted metabolomics and machine learning algorithms. | LitMetric

Identification of biomarkers for risk assessment of arsenicosis based on untargeted metabolomics and machine learning algorithms.

Sci Total Environ

The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China. Electronic address:

Published: April 2023

Background: Long-term exposure to inorganic arsenic may lead to arsenicosis. There are, however, currently no validated metabolic biomarkers used for the identification of arsenicosis risk. This study aims to identify metabolites associated with arsenicosis and establish prediction models for risk assessment based on untargeted metabolomics and machine learning algorithms.

Methods: In total, 105 coal-borne arsenicosis patients, with 35 subjects in each of the mild, moderate, and severe subgroups according to their symptom severity, and 60 healthy residents were enrolled from Guizhou, China. Ultra-high performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) was utilized to acquire the plasma metabolic profiles of the studied subjects. Statistical analysis was used to identify disease-associated metabolites. Machine learning algorithms and the identified metabolic biomarkers were resorted to assess the arsenicosis risk.

Results: A total of 143 metabolic biomarkers, with organic acids being the majority, were identified to be closely associated with arsenicosis, and the most involved pathway was glycine, serine, and threonine metabolism. Comparative analysis of metabolites in arsenicosis patients with different symptom severity revealed 422 altered molecules, where disrupted metabolism of beta-alanine and arginine demonstrated the most significance. For risk assessment, the model established by a single biomarker (L-carnosine) could undoubtedly discriminate arsenicosis patients from the healthy. For classifying arsenicosis patients with different severity, the model established using 52 metabolites and linear discriminate analysis (LDA) algorithm yielded an accuracy of 0.970-0.979 on calibration set (n = 132) and 0.818-0.848 on validation set (n = 33).

Conclusion: Altered metabolites and disrupted pathways are prevalent in arsenicosis patients; The disrupted metabolism of one carbon and dysfunction of antioxidant defense system may partially be causes of the systematic multi-organ damage and carcinogenesis in arsenicosis patients; Metabolic biomarkers, combined with machine learning algorithms, could be efficient for risk assessment and early identification of arsenicosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161861DOI Listing

Publication Analysis

Top Keywords

arsenicosis patients
24
risk assessment
16
machine learning
16
metabolic biomarkers
16
arsenicosis
13
learning algorithms
12
based untargeted
8
untargeted metabolomics
8
metabolomics machine
8
identification arsenicosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!