Novel sialoglycan linkage for constructing adjuvant-protein conjugate as potent vaccine for COVID-19.

J Control Release

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China. Electronic address:

Published: March 2023

Self-adjuvanting protein vaccines have been proved to be highly immunogenic with efficient codelivery of adjuvant and antigen. Current protein vaccines with built-in adjuvants are all modified at the peptide backbone of antigen protein, which could not achieve minor epitope interference and adjuvant multivalency at the same time. Herein, we developed a new conjugate strategy to construct effective adjuvant-protein vaccine with adjuvant cluster effect and minimal epitope interference. The toll-like receptor 7 agonist (TLR7a) is covalently conjugated on the terminal sialoglycans of SARS-CoV-2-S1 protein, leading to intracellular release of the small-molecule stimulators with greatly reduced risks of systemic toxicity. The resulting TLR7a-S1 conjugate elicited strong activation of immune cells in vitro, and potent antibody and cellular responses with a significantly enhanced Th1-bias in vivo. TLR7a-S1-induced antibody also effectively cross-neutralized all variants of concern. This sialoglycoconjugation approach to construct protein conjugate vaccines will have more applications to combat SARS-CoV-2 and other diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907060PMC
http://dx.doi.org/10.1016/j.jconrel.2023.01.062DOI Listing

Publication Analysis

Top Keywords

protein vaccines
8
epitope interference
8
protein
5
novel sialoglycan
4
sialoglycan linkage
4
linkage constructing
4
constructing adjuvant-protein
4
conjugate
4
adjuvant-protein conjugate
4
conjugate potent
4

Similar Publications

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

Background And Purpose: Clinical manifestations of Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl), include erythema migrans, Lyme neuroborreliosis (LNB), carditis, and arthritis. LB is a notifiable disease in Japan with <30 surveillance-reported LB cases annually, predominately from Hokkaido Prefecture. However, LB, including LNB, may be under-diagnosed in Japan since diagnostic tests are not readily available.

View Article and Find Full Text PDF

Ancestral SARS-CoV-2 immune imprinting persists on RBD but not NTD after sequential Omicron infections.

iScience

January 2025

Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Whether Omicron exposures could overcome ancestral SARS-CoV-2 immune imprinting remains controversial. Here we analyzed B cell responses evoked by sequential Omicron infections in vaccinated and unvaccinated individuals. Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants indicate that immune imprinting is not consistently induced by inactivated or recombinant protein vaccines.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!