Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atherosclerotic plaques form in artery walls due to a chronic inflammatory response driven by lipid accumulation. A key component of the inflammatory response is the interaction between monocyte-derived macrophages and extracellular lipid. Although concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles in the blood are known to affect plaque progression, their impact on the lipid load of plaque macrophages remains unexplored. In this paper, we develop a lipid-structured mathematical model to investigate the impact of blood LDL/HDL levels on plaque composition, and lipid distribution in plaque macrophages. A reduced subsystem, derived by summing the equations of the full model, describes the dynamics of biophysical quantities relating to plaque composition (e.g. total number of macrophages, total amount of intracellular lipid). We also derive a continuum approximation of the model to facilitate analysis of the macrophage lipid distribution. The results, which include time-dependent numerical solutions and asymptotic analysis of the unique steady state solution, indicate that plaque lipid content is sensitive to the influx of LDL relative to HDL capacity. The macrophage lipid distribution evolves in a wave-like manner towards an equilibrium profile which may be monotone decreasing, quasi-uniform or unimodal, attaining its maximum value at a non-zero lipid level. Our model also reveals that macrophage uptake may be severely impaired by lipid accumulation. We conclude that lipid accumulation in plaque macrophages may serve as a partial explanation for the defective uptake of apoptotic cells (efferocytosis) often reported in atherosclerotic plaques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2023.108971 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!