Mechanistic and evolutionary insights into alkaline phosphatase superfamily through structure-function studies on Sphingomonas alkaline phosphatase.

Arch Biochem Biophys

Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.

Published: March 2023

Alkaline phosphatases (APs), represented by E. coli AP (ECAP), employ an arginine residue to stabilize the phosphoryl group in the active site; whereas, AP from Sphingomonas (SPAP) shows a unique combination of substrate-binding residues; Thr89, Asn110, Lys171, and Arg173. Although such combination has been observed only in SPAP, these residues are present separately in different members of the AP superfamily. Here, we establish the presence of two distinct classes of APs; ECAP-type and SPAP-type. Bioinformatic analyses show that SPAP-type of APs are widely distributed in the bacterial kingdom. The role of active site residues in the catalytic mechanism has been delineated through a set of crystal structures reported here. These structures, representing different stages of the reaction pathway provide wealth of information for the catalytic mechanism. Despite critical differences in the substrate binding residues, SPAP follows a mechanism similar to that of ECAP-type of APs. Structure-based phylogenetic analysis suggests that SPAP and ECAP may have diverged very early during the evolution from a common ancestor. Moreover, it is proposed that the SPAP-type of APs are fundamental members of the AP superfamily and are more closely related to other members of the superfamily as compared to the ECAP-type of APs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2023.109524DOI Listing

Publication Analysis

Top Keywords

members superfamily
12
alkaline phosphatase
8
active site
8
spap-type aps
8
catalytic mechanism
8
ecap-type aps
8
aps
6
mechanistic evolutionary
4
evolutionary insights
4
insights alkaline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!