Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The purpose of the present study was to evaluate the efficacy of spiral ganglion neuron (SGN) regeneration after dental pulp stem cell (DPSC) transplantation in a rat sensorineural hearing loss (HL) model.
Materials And Methods: Sham or experimental HL was induced in adult Sprague-Dawley rats by cochlear round window surgery. An HL rat model was established with a single 10 mM ouabain intratympanic injection. After 7 days, the rats received DPSCs, stem cells from human exfoliated deciduous teeth (SHED), or culture medium in the sutural area to establish four groups: sham, HL-DPSC, HL-SHED, and HL-medium. Histological analyses were performed at 4, 7, and 10 weeks after transplantation, and the number of SGNs, specific SGN protein expression, and the function of SGNs were evaluated.
Statistical Analysis: Data were statistically by MS Excel and SPSS v.15.0. Intergroup level of significance was determined via a one-way analysis of variance and Duncan's multiple range test with 95% confidence intervals.
Results: New SGN formation was observed in the HL-DPSC and HL-SHED rat groups. The number of SGNs was significantly higher in the HL-DPSC and HL-SHED groups than in the HL-medium group over 4 to 10-week survival period. HL-DPSC rats exhibited higher SGN density compared with that in HL-SHED group, which was statistically significant at week 10. The regenerated SGNs expressed cochlear wiring regulator GATA-binding-protein 3. Moreover, the SGNs from the HL-DPSC group also exhibited a higher expression of synaptic vesicle protein and regulated action potential-dependent neurotransmitter release compared with SGNs from the HL-SHED group.
Conclusions: Our findings suggest that DPSCs and SHED repair and regenerate SGNs in rat HL model. Dental pulp stem cells represent a promising treatment strategy for restoring damage to the sensory circuits associated with deafness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756831 | PMC |
http://dx.doi.org/10.1055/s-0043-1761190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!