Saliency-CCE: Exploiting colour contextual extractor and saliency-based biomedical image segmentation.

Comput Biol Med

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, P.R. China. Electronic address:

Published: March 2023

Biomedical image segmentation is one critical component in computer-aided system diagnosis. However, various non-automatic segmentation methods are usually designed to segment target objects with single-task driven, ignoring the potential contribution of multi-task, such as the salient object detection (SOD) task and the image segmentation task. In this paper, we propose a novel dual-task framework for white blood cell (WBC) and skin lesion (SL) saliency detection and segmentation in biomedical images, called Saliency-CCE. Saliency-CCE consists of a preprocessing of hair removal for skin lesions images, a novel colour contextual extractor (CCE) module for the SOD task and an improved adaptive threshold (AT) paradigm for the image segmentation task. In the SOD task, we perform the CCE module to extract hand-crafted features through a novel colour channel volume (CCV) block and a novel colour activation mapping (CAM) block. We first exploit the CCV block to generate a target object's region of interest (ROI). After that, we employ the CAM block to yield a refined salient map as the final salient map from the extracted ROI. We propose a novel adaptive threshold (AT) strategy in the segmentation task to automatically segment the WBC and SL from the final salient map. We evaluate our proposed Saliency-CCE on the ISIC-2016, the ISIC-2017, and the SCISC datasets, which outperform representative state-of-the-art SOD and biomedical image segmentation approaches. Our code is available at https://github.com/zxg3017/Saliency-CCE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106551DOI Listing

Publication Analysis

Top Keywords

image segmentation
20
biomedical image
12
sod task
12
segmentation task
12
novel colour
12
salient map
12
colour contextual
8
contextual extractor
8
segmentation
8
segmentation biomedical
8

Similar Publications

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy.

View Article and Find Full Text PDF

Pseudolabel guided pixels contrast for domain adaptive semantic segmentation.

Sci Rep

December 2024

The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.

Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels.

View Article and Find Full Text PDF

Pattern memory cannot be completely and truly realized in deep neural networks.

Sci Rep

December 2024

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122, China.

The unknown boundary issue, between superior computational capability of deep neural networks (DNNs) and human cognitive ability, has becoming crucial and foundational theoretical problem in AI evolution. Undoubtedly, DNN-empowered AI capability is increasingly surpassing human intelligence in handling general intelligent tasks. However, the absence of DNN's interpretability and recurrent erratic behavior remain incontrovertible facts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!