Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to observe the effect of a simulated liver tissue injury microenvironment on the directed differentiation of umbilical cord mesenchymal stem cells into hepatocytes with CYP450 metabolic activity in vitro, and to explore the mechanisms underlying this directed differentiation. Normal and damaged liver tissue homogenate supernatants (LHS and CCl-LHS, respectively) were used as induction fluids. After induction for different durations, Western blot and RT-PCR were used to measure the protein and gene expression of the hepatocellular proteins AFP, CK18, ALB, and the CYP450 family. Simultaneously, the metabolic activity of CYP450 in hepatocytes was determined. Compared with the LHS and CCl-LHS controls, the LHS and CCl-LHS induction groups showed a significantly elevated protein and gene expression of AFP, CK18, ALB, CYP1A1/2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 (P < 0.05). The metabolic activity of CYP450 in hepatocytes was increased (P < 0.05). In addition, compared with the LHS group, the CCl-LHS group induced cell differentiation more rapidly and with a higher efficiency. The results suggested that a liver injury microenvironment is conducive for the directed differentiation of umbilical cord mesenchymal stem cells into hepatocytes with metabolic enzyme activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.01.065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!