Polyetheretherketone (PEEK) has been widely used in the preparation of orthopedic implants due to its biological inertness and similar mechanical modulus to natural bone. However, the affinity between biological tissue (bone and soft tissue) and PEEK surface is weak, leading to low osseointegration and an increased risk of inflammation. The situation could be improved by modifying PEEK surface. Surfaces with good hydrophilicity and proper microtopography would promote cellular adhesion and proliferation. This work presented a two-step surface modification method to achieve the effect. Polyacrylic acid (PAA) chains were grafted on PEEK surface by UV irradiation. Then, ethylenediamine (EDA) was added to introduce amino groups and promote the cross-linking of PAA chains. Furthermore, a mathematical model was built to describe and regulate the surface topography growth process semi-quantitatively. The model fits experimental data quite well (adjusted R = 0.779). Results showed that the modified PEEK surface obtained superhydrophilicity. It significantly improved the adhesion and proliferation of BMSCs and MFBs by activating the FAK pathway and Rho family GTPase. The cellular affinity performed better when the surface topography was in network structure with holes in about 25 μm depth and 20-50 μm diameter. Good hydrophilicity seems necessary for the FAK pathway activation, but simply improving surface hydrophilicity might not be enough for cellular affinity improvement. Surface topography at micron scale should be a more important cue. This simple surface modification method could be contributed to further study of cell-microtopography interaction and have potential applications in clinical PEEK orthopedic implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2023.213310 | DOI Listing |
Polymers (Basel)
January 2025
Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China.
Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials Science and Engineering, Institute of Space Technology Islamabad Pakistan
Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, China. Electronic address:
This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.
View Article and Find Full Text PDFSci Rep
January 2025
Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!