pH is a crucial factor of microbial nitrification, which often combines with high-strength ammonium to influence nitrogen removal pathway in wastewater treatment. However, the detailed inhibitory mechanisms of pH stress are not sufficiently disclosed yet. In this study, the pH stress effect on nitrification was comprehensively studied by a set of experiments which identified the reactivity of nitrification processes and activity of nitrifiers, the time dependence of inhibition effect and the hybrid pH stress effect with ammonium. The results revealed two distinct inhibitory mechanisms dominating in alkaline and acid ranges. In alkaline range (pH > 8), pH stress causes physiological damages on microorganisms which is named as microbial inhibition. It has the features of less recoverability of nitrifiers, time-dependent inhibition effect and low pH-tolerance of nitrite oxidation bacteria. Free ammonia enhanced microbial inhibition and greatly promoted nitrite accumulation. A novel reactive inhibition mechanism dominated in acid range (pH < 7) was disclosed. It only impedes ammonia oxidation process (AOP) but not impair microbial activity obviously and the effect is time-independent. The mechanism was clarified from H transport because AOP involved H production. The H transport was impeded under acid stress owing to the decrease of pH gradient across cell membrane. The two mechanisms formed a panoramic view of pH stress effect on nitrification advancing the understanding of nitrifier adaptability and nitritation regulation in wastewater treatment processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.119660 | DOI Listing |
Cytotherapy
February 2025
Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China. Electronic address:
Asthma, a prevalent allergic disease affecting approximately 300 million individuals globally, remains a significant public health challenge. Mesenchymal stromal cells (MSCs) and hepatocyte growth factor (HGF), both recognized for their immunomodulatory properties, hold therapeutic potential for asthma. However, their precise mechanisms remain underexplored.
View Article and Find Full Text PDFEndokrynol Pol
March 2025
Department of Metabolic Endocrinology, Zhuzhou Central Hospital, Zhuzhou, China.
Introduction: The proprotein convertase subtilisin/kexin type 9/lectin-like oxidized low-density lipoprotein receptor-1 (PCSK9/LOX-1) axis plays a crucial role in regulating vascular endothelial cell function, but its specific involvement in type 2 diabetes mellitus (T2DM) remains unclear. This study aims to explore the potential mechanism of the PCSK9/LOX-1 axis in high-glucose (HG)-induced vascular endothelial cell dysfunction.
Material And Methods: Peripheral blood samples were collected from T2DM patients to analyse the correlation between PCSK9 and blood lipid levels.
Front Microbiol
February 2025
Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia.
Antimicrobial resistance (AMR) is recognized as one of the foremost global health challenges, complicating the treatment of infectious diseases and contributing to increased morbidity and mortality rates. Traditionally, microbiological culture and susceptibility testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) assays, have been employed to identify AMR bacteria. However, these conventional techniques are often labor intensive and time consuming and lack the requisite sensitivity for the early detection of resistance.
View Article and Find Full Text PDFFront Microbiol
February 2025
Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
Background: Multidrug-resistant strains of the genus can produce various β-lactamases that confer resistance to a broad spectrum of β-lactams, which poses a significant public health threat due to their emergence and spread in clinical settings and natural environments. Therefore, a comprehensive investigation into the antibiotic resistance mechanisms of is scientifically significant.
Methods: Between 2018 and 2021, 78 clinical isolates were collected from human clinical specimens.
Oncol Lett
April 2025
Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.
The objective of the present study was to elucidate the mechanism by which glycyrrhizin enhances the antitumor activity of cisplatin in non-small cell lung cancer. Initially, A549 cells were treated with different concentrations of glycyrrhizin (0.25-8 mM) or cisplatin (10-160 µM) for 48 h to investigate the effect of glycyrrhizin combined with cisplatin on A549 cells .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!