Presently electron beam treatments are delivered using dedicated applicators. An alternative is the usage of the already installed photon multileaf collimator (pMLC) enabling efficient electron treatments. Currently, the commissioning of beam models is a manual and time-consuming process. In this work an auto-commissioning procedure for the Monte Carlo (MC) beam model part representing the beam above the pMLC is developed for TrueBeam systems with electron energies from 6 to 22 MeV.The analytical part of the electron beam model includes a main source representing the primary beam and a jaw source representing the head scatter contribution each consisting of an electron and a photon component, while MC radiation transport is performed for the pMLC. The auto-commissioning of this analytical part relies on information pre-determined from MC simulations, in-air dose profiles and absolute dose measurements in water for different field sizes and source to surface distances (SSDs). For validation calculated and measured dose distributions in water were compared for different field sizes, SSDs and beam energies for eight TrueBeam systems. Furthermore, a sternum case in an anthropomorphic phantom was considered and calculated and measured dose distributions were compared at different SSDs.Instead of the manual commissioning taking up to several days of calculation time and several hours of user time, the auto-commissioning is carried out in a few minutes. Measured and calculated dose distributions agree generally within 3% of maximum dose or 2 mm. The gamma passing rates for the sternum case ranged from 96% to 99% (3% (global)/2 mm criteria, 10% threshold).The auto-commissioning procedure was successfully implemented and applied to eight TrueBeam systems. The newly developed user-friendly auto-commissioning procedure allows an efficient commissioning of an MC electron beam model and eases the usage of advanced electron radiotherapy utilizing the pMLC for beam shaping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/acb755 | DOI Listing |
ACS Appl Electron Mater
January 2025
Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.
View Article and Find Full Text PDFActa Biomater
January 2025
MATEIS, UMR CNRS 5510, INSA, FR- 7 Avenue Jean Capelle, 69621 Villeurbanne cedex, France. Electronic address:
The present study investigated the in vivo aging of yttria-stabilized zirconia (YSZ) oral implants (ZiUnite®) removed after 37 to 181 months. These implants featured a porous zirconia surface to enhance osseointegration. They were placed in prospective clinical investigations and had to be explanted due to peri-implant bone breakdown.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, Paderborn, 33098, Germany. Electronic address:
Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!