The hip joint helps the upper body to transfer its weight to lower body. Along with age, there are various reasons for the degeneration of the hip joint. The artificial hip implant replaces the degenerated hip. Wear between the joints is the primary cause of the hip implant becoming loose. The wear can occur due to various reasons. Due to this revision surgery are most common in young and active patients. In the design phase of the implant if this is taken care then life expectancy of the implant can be improved. Small design changes can significantly enhance the implant's life. In this work, elliptical-shaped hip implant stem is designed, and linear wear is estimated at trunnion junction. In this work, a 28 mm diameter femoral head with a 4 mm thick acetabular cup and a 2 mm thick backing cup is used. The top surface taper radiuses are changed. Solid works was used to create the models. Ansys was used to perform the analysis. It was found that as the radius of the TTR decreased, the wear rate decreased. The least wear rate was found in 12/14 mm taper with a value of 1.15Emm yearfor the first material combination and with a value of 1.23Emm yearfor the second material combination. In the comparison between the models with 1 mm chamfer and no chamfer, it was found that the wear rate was lower for the models with 1 mm chamfer. When the chamfer was increased (more than 1 mm), the linear wear increased. Wear is the main reason for the loosening of hip implants, which leads to a revision of an implant. It was found that with a decrease in TTR, there was a small increase in the linear wear rate. Overall, the implant with TTR 6 mm and a chamfer of 1 mm was found to have the least wear rate. To validate these results, the implant can be 3D printed and tested on a hip simulator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/acb710 | DOI Listing |
Materials (Basel)
January 2025
Faculty of Marine Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland.
Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.
Chemical mechanical planarization (CMP) is a technique used to efficiently prepare defect-free, flat surfaces of stainless steel (SS) foils and sheets that are implemented in various modern devices. CMP uses (electro)chemical reactions to structurally weaken the surface layers of a workpiece for easy removal by low-pressure mechanical abrasion. Using a model CMP system of 316/316L stainless steel (SS) in an acidic (pH = 3.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Intzestraße 3, 52056 Aachen, Germany.
Hardfacing is a welding-related technique aimed at depositing a harder and tougher layer onto a softer, less wear-resistant substrate or base metal. This process enhances the abrasion resistance of the component, increasing its durability under working conditions. A key feature of hardfacing is dilution, which refers to the mixing of the hardfacing layer and the base metal.
View Article and Find Full Text PDFSci Adv
January 2025
School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.
Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
McMaster Manufacturing Research Institute, McMaster University, Hamilton, ON L8P 0A6, Canada.
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!