The excited-state dynamics of molecules embedded in complex (bio)matrices is still a challenging goal for quantum chemical models. Hybrid QM/MM models have proven to be an effective strategy, but an optimal combination of accuracy and computational cost still has to be found. Here, we present a method which combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method. The newly implemented method is applied to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein. We show that the proton-coupled electron transfer (PCET) process suggested for other BLUF proteins is still valid also for AppA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923743PMC
http://dx.doi.org/10.1021/acs.jpclett.2c03797DOI Listing

Publication Analysis

Top Keywords

excited-state dynamics
8
fast method
4
method excited-state
4
dynamics complex
4
complex systems
4
systems application
4
application photoactivation
4
photoactivation blue
4
blue light
4
light flavin
4

Similar Publications

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

Size Effect on Ultrafast Dynamics of the Photoexcited Be Electron in Be@C (2 = 60, 70, and 80).

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.

View Article and Find Full Text PDF

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

Excited-State Proton Transfer Dynamics of Cyanonaphthol in Protic Ionic Liquids: Concerted Effects of Basicity of Anions and Alkyl Carbons in Cations.

J Phys Chem B

January 2025

Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoyo 610-0321, Japan.

Excited-state proton transfer (ESPT) reactions of 5-cyano-2-naphthol (5CN2) and 5,8-dicyano-2-naphthol (DCN2) were investigated in protic ionic liquids (PILs) composed of quaternary ammonium (NH) ( = 2, 4, or 8) and hexanoate (CHCOO) using time-resolved fluorescence spectroscopy. The effects of the number of alkyl carbons in the cation and the basicity of the anion on the reaction yield and dynamics were examined. In a series of [NH][CHCOO], fluorescence from the hydrogen-bonding complex (AHBX) of a proton-dissociated form (RO) with a solvent acid in the electronic excited state was observed between the fluorescence bands of an acidic form (ROH) and an anionic form (RO) as in the case of [NH][CFCOO] (Fujii et al.

View Article and Find Full Text PDF

Elucidation of the vibrational relaxation process of interfacial water is indispensable for understanding energy dissipation at the aqueous interface. In this study, the vibrational relaxation dynamics of the hydrogen-bonded OH (HB OH) stretch vibration was investigated at the air/isotopically diluted water (HOD-DO) interface by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy. We observed the temporal change of the excited-state band ( = 1 → 2 transition), which enables a reliable determination of the time of interfacial water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!